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FOREWORD

This report was prepared jointly by the Lockheed-California Company,

Burbank, California and the University of Dayton Research Institute, Dayton,

Ohio for the Structural Integrity Branch, Flight Dynamics Laboratory, Air

Force Wright Aeronautical Laboratory, Wright-Patterson Air Force Base, Ohio

under contract F33615-81-C-3213, "Aerospace Structures Technology Damping

Design Guide." Mr. V. R. Miller of the Structural Integrity Branch was the

Project Engineer. Dr. J. Soovere of the Lockheed-California Comapny was the

overall Program Manager and Mr. M. L. Drake was the Program Manager for the

University of Dayton. The authors wish to acknowledge the contribution to this

report provided by Mr. M. Bouchard, Dr. M. Soni, Mr. M. F. Kluesener,

Mr. R. Nash, Mr. R. Dominic, Mr. P. Grat, and Mr. D. M. Hopkins from the

University of Dayton, and by Mr. H. A. Gamon from Lockheed-California Company.

This report consists of three volumes. Volume I provides a summary of

the current technology in the application of viscoelastic damping, Volume II

is the design guide for viscoelastic damping applications, and Volume III

contains the damping material data for use with Volume II.

The damping material data in Volume III are presented in a simplified

format, suitable for use by designers. All of the damping material data are

believed to be accurate, but no guarantee of accuracy or completeness is made.

No responsibility is assumed for changes in these data due to batch-to-batch

variation in the commercially manufactured damping materials. The damping

material data should be verified independently under the proposed operating

conditions, for each damping material, prior to its use.
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SECTION 1

INTRODUCTION

Aerospace structures and equipment mounted in these structures are

required to operate under a wide range of dynamic loads. When structural

resonances are excited, the dynamic loads can produce excessive vibration

levels in the structures and equipment. High interior noise levels can be

produced by excessive vibration of the surrounding structure. The resonant
A vibration levels can be significantly reduced by increasing the damping in the

dominant modes through the application of viscoelastic damping technology.

The above vibration problems are often encountered following some initial

in-service exposure. The high cost of subsequent structural changes has made

the application of viscoelastic damping technology both attractive and cost-

effective in solving these problems. In many instances the reduction in res-

onant vibration response has been quite dramatic (Figure 1.1), e.ceeding that

possible with stiffening for the same weight increment. Viscoelastic damping

100
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Figure 1.1. - Life extension obtained with additive daping on
existing hardware.
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has been applied successfully in many fields of engineering as indicated by the

results (Figure 1.2) of a survey donducted in the United States of America as

part of this program. It has also been used in Civil Engineering to reduce the

noise transmission in buildings. The main use of viscoelastic damping has been

for the purposes of vibration control, noise control, and preventing high cycle

fatigue failures and sonic fatigue in that order (Figure 1.3). Controlling

vibration can improve the accuracy of optical systems and guidance systems as

well as the reliability of electronic equipment. The use of visco,_-lastic

(passive) damping is also expected to increase in space applications, in con-

junction with active damping, since the inherent damping is very low in aero-

space metals and high-modulus, graphite/epoxy composites. These latter materi-

als are being used in increasing quantities in space structures.

17%

14%

12%

l m11% /0 0
-- '10%

AIRCRAFT TURBINES NAVY SPACE AUTOMOTIVE MISSILES ELECTRONICS MACHINE
AND SHIPS STRUCTURES OPTICS AND

EQUIPMENT AND AND MACHINE
EQUIPMENT LASERS TOOLS

Figure 1.2. - Application of damping technology.
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Figure 1.3. Purpose for use of damping technology.

Vibration testing and data analysis capability has increased dramatically

in recent years. The resonant frequencies and damping in structures can now

be determined much quicker and with a greater accuracy. The dynamic loads and

vibration environments encountered by aerospace structures and equipment arc

reasonably well known. Damping materials for use in a temperature range from

-650F (-540C) to 1500*F (8160C) have been developed. The theory for simulta-

neously curve fitting the measured modulus and loss factor, for improved accu-

racy and consistency, has been developed for these materials. The basic Ross-

Kerwin-Ungar analysis methods for application of viscoelastic damping to beams

and plates and the subsequent work by many authors, have been complemented by

the development of finite element methods which enable the damping technology

to be applied to more complex structural designs. Many successful applications

of the viscoelastic damping technology have been reported in the literature.

Consequently, it should be possible to anticipate resonant vibration problems

and apply the damping technology at the design stage. This approach would not

only reduce the cost relative to a subsequent design change, but could also

result in a lighter design (integral damping in Figure 1.1).

The viscoelastic damping technology has reached a sufficient state of

maturity to take its place as a practical design tool for overcoming resonant
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vibration problems. The Damping Design Guide has been developed to speed this

process by bringing together much of the information available in literature

on the application of viscoelastic damping technology. For a wide appeal, the

Damping Design Guide should be suitable, for use by designers. This objective

represents a very difficult task, as was revealed by the results of the survey

(Figure 1.4). Most of the personnel, currently involved in the application of

damping technology, are research and development (R&D) engineers. These R&D

engineers and their immediate management represent 93 percent of the personnel

active in the field (Figure 1.4). Consequently, the R&D engineers are also cur-

rently involved in the design and production effort. The bar chart in Fig-

ure 1.4 was not normalized, on purpose, to illustrate this point.

To make this technology available to a wider range of engineers and

designers, the analysis methods used in this design guide have been simplified,

wherever possible, through the use of approximate methods that exhibit accept-

able engineering accuracies. Knowledge of structural dynamics would, however,

be an advantage. The damping design guide is organized into three volumes.

76% PERCENT OF INDIVIDUALS

34%

22%

17%

R&D DESIGN PRODUCTION MANAGEMENT

Figure 1.4. - Classification of individuals active in the application of
damning technology.
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* Volume 1 is intended to be more of a reference volume providing a
broad background of information on viscoelastic damping technology
and the related fields. This volume contains reference sources and
provides the basis for the data and equations used in Volume II of
the Design Guide.

" Volumes II and III represent the user-oriented Design Guide, intended
for use by designers and engineers.

- Volume II contains a brief introduction to vibration, damping, and
damping materials. It also contains design equations, design
procedures, worked examples and other data useful to the design of
damping treatments. The worked examples are intended to illustrate
the use of the design procedures and equations.

- Volume III contains the damping material data that are to be used
with the design equations in Volume II. It also contains a list
of vendors where these damping materials can be obtained.
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SECTION 2

FUNDAMENTALS OF DAMPING AND DAMPING MATERIALS

2.1 NATURE OF DAMPING

When an elastic body is deformed cyclically, a very large part of the

stored mechanical energy is recoverable. The remaining part of this mechanical

energy is dissipated irreversibly. This irreversible dissipation of mechanical

energy is known as damping.

Damping is produced by a variety of energy loss mechanisms. In the basic

materials, including the viscoelastic damping materials, the damping is pri-

marily derived from the conversion of mechanical energy into heat through

internal friction. This type of damping is known as hysteresis or material

damping. Damping is also derived from friction due to relative motion between

fluids or solid surfaces and from energy transport to adjacent structural com-

ponents or fluids (including acoustic radiation). Because of the variety of

damping mechanisms, it is difficult to both predict and eliminate the damping.

These mechanisms, however, provide insight into various means of increasing

the damping [2.1].

2.1.1 Physical Mechanisms of Material Damping [2.21

The energy dissipating mechanisms contributing tc the material damping

are themselves very complex and depend on a great number of factors [2.3].

In particular, energy dissipation depends on:

* Internal factors such as type of material, chemical composition,

internal crystalline or noncrystalline structure.

* External factors such as temperature, preload, initial strain.

* Factors connected with motion, amplitude and frequency of
deformation, state of stress.

* Specimen factors such as geometry, scale, state of surfaces,
bonding.
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Originally, the damping in materials was thought to be a homogeneous

process. It is now understood that the dissipation of mechanical energy within

a material involves the transference of the internal structure from one state

of thermal equilibrium to another state of equilibrium, corresponding to the

newly imposed conditions. This transfer process is accomplished through a

reorganization of the internal structure at the macro and micro structural

levels. The mechanisms of internal reconstruction include magnetic effects

(magnetoelastic, magnetomechanical hysteresis, eddy currents, and magneto-

strictive effects) and thermal effects (thermoelastic, thermal conductivity,

thermal diffusion, and thermal flow effects). The latter group includes

effects connected with diffusion, dislocations, concentrated defects of crys-

tal lattices, photoelectronic effects, stress relaxation at grain boundaries,

blocks in polycrystalline materials, phase processes in solid solutions, etc.

During deformation, the above mechanisms contribute to the overall

material damping. Each process is, however, associated with a certain fre-

quency and temperature range at which it provides the most effective contribu-

tion. This frequency and temperature range can vary with external conditions,

the stress state and the stress amplitude. The processes, responsible for the'

internal structure reorganization, can be both irreversible and reversible.

These processes include:

" Relaxation damping which is dependent on frequency and temperature
but independent of the deformation amplitude. Actually the process
is reversible at small amplitudes, depending on the time, and is
called "anelasticity of materials". At larger amplitudes the process
becomes irreversible and is known as "viscoelasticity".

* Resonant damping which is dependent on the resonant frequency of theI particular mechanism.

* Hysteretic damping ("structural") which is independent of the velocity
of deformation, but dependent on the amplitude.

" Nonlinear viscous damping which is dependent on the amplitude and the
velocity of deformation and other factors (mainly temperature).
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2.1.2 Measure of Damping

In spite of the extreme complexity of the energy dissipating mechanisms,

a number of parameters have been proposed that provide an adequate measure of

the total energy dissipated within the materials as well as in the structure

using the materials. It is common practice to separate the material damping

from the total damping of the built-up structure. There has been a concerted

effort over many years to separate and quantify all of the damping mechanisms,

such as acoustic radiation, and dissipation in mechanical joints, that con-

tribute to the overall damping in" the structure. The material damping and the

dissipation of energy in joints freed from the effects of gravity are important

in space applications.

The energy dissipated per unit time, in a unit volume of a macroscopically

homogeneous material [2.3], provides a useful measure of the material damping,

and is defined by

D = Jo ode (2.1)

where o is the instantaneous stress and e is the corresponding strain. The

quantity D, known as the specific damping energy, is a measure of the capability

of a given homogeneous material to dissipate energy when cyclically strained.

Generally, nondimensional parameters, describing the energy dissipating

capacity of material, are more useful. One such parameter is the specific

damping capacity $, which represents the fraction of the system's vibrational

energy that is dissipated in one cycle of vibration. It is given by

0= IVs s

where

D 27 f dv (2.2)
S i
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is the energy dissipated in the total volume, v, of the specimen during one

cycle, and

U = - fao- dv (2.3)
2 vol

is the maximum strain energy stored in the specimen during the same cycle. In

the above equation 0 and C are the maximum (zero to peak) stress and strain0 0

amplitudes, respectively.

Another measure of damping, which is related to the ratio of energy dis-

sipated to energy stored per cycle, is represented by the system damping coef-

ficient or loss factor, which is defined by

8- Da/2,U (2.4)

where D and U are given by Equations 2.2 and 2.3.s s

There are several measures of daping related to the rate of decay of

free vibration. The logarithmic decrement is defined as:

X
= in (2.5)

where Xn and Xn+ 1 are two successive aplitudes (strain, acceleration, or

displacement) of the decaying free vibration.

Two other decay rate related damping parameters are At and T6 0 . The

parameter A , which represents the rate of reduction of the vibration in dB/sec

is given by

1(t 1 )
St-l20 log1 o (t) (2.6)
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where t1 and t2 are points in time an integer nunber of periods apart. T60

denotes the reverberation time (in seconds) (in analogy to the related room-

acoustic measure) that it takes for the vibration amplitude of a system, vibra-

ting freely at frequency fn (Hz), to decrease by 60 dB or to 1/1000 of its ini-

tial value.

Another measure of damping is related to the spatial decay of the vibra-

tion along the specimen. For such specimens, use has been made of a logarith-

mic attenuation coefficient [2.3,2.4]:

t (x 1)

6 - In - (2.7)

a spatial attenuation coefficient [2.3, 2.4]:

8 x_ 1 - (Si (2.8)In(.)
1 X- 2  ( 2 )

and a decibel attenuation coefficient rate in space [2.3, 2.41:

1 c(X )
1 20 loglO O 1) (2.9)

where x I , x2 are the space coordinates of two points in the specimen, integral

wave lengths apart, and E(x 1 ) and £(x2) are the corresponding strains.

Most materials are not ideally elastic. Under cyclic tension-compression

loading, a characteristic hysteresis loop is obtained in the resulting stress-

strain (or force-displacement) relationship. The area enclosed by the hysteresis

loop can be used as a measure of dissipated energy since the area is propor-

tional to the specific damping energy, D, even for nonlinear materials [2.4].
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Some of the most commonly used measures of damping are based on the

viscoelastic damping model. The damping force in this model is proportional

to the velocity. The ratio of the damping force to the velocity is called the

viscous damping coefficient, c. The simplest model of a viscoelastically

damped system is provided by the single mass-spring-dashpot system, in which

the dashpot provides the damping proportional to velocity. If this system,

with a modest viscoelastic damping force, is disturbed from the equilibrium

position and then released, the mass will oscillate about the equilibrium

position with decreasing amplitude. However if c is made large eno-igh, no

oscillations will occur. Instead, the mass will creep toward its equilibrium

position without crossing it. The-viscous damping coefficient at which the

motion of the mass first becomes nonoscillatory is called the critical (viscous)
1/2

damping coefficient, c = 2(KM) , where M denotes mass and K the springc

stiffness. The viscous damping ratio, c/c c , also called the fraction of criti-

cal damping or percent of critical damping, is widely used to indicate damping

magnitudes.

Two other measures of damping are derived from the steady state behavior

of an ideal linear mass-spring-dashpot system that is driven by a sinusoidal

force of constant amplitude. The amplification at resonance, often called the

"Q" of the system, is defined as the ratio of the amplitude of the displace-

ment at resonance to the static displacement (the amplitude of the displacement

at zero frequency). The proportional bandwidth, Af/f , takes account of then
damping-related broadening of the peak in a plot of response amplitude versu!.

frequency. In this expression, Af denotes the difference between the two half

power point frequencies, one above, and one below the resonance frequency, "

at which the square of the response amplitude is one-half of the maximum value

at the resonance frequency.

All of the damping measures are related. To illustrate this point, let

us consider the relative energy dissipation coefficient for a process of free
vibration. The energy, Us , is here proportional to C2-o and so we have:

2-0
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t+T Dt+T

-I dt - - .)(2.10)t 2%Us ft (t)

-(t) _ _ain11 = n (€.- "
o(t+T) I (n+l)

where 8 is the logarithmic decrement. The interrelationship between all of

the damping measures are [2.1,2.2,2.3]

t2.20 A , 6 D s 2c2L 220 ____ -= - = 2 (2.11)
21Tf f- T 73i r 2irUl cQn 60 n n s c

The symbols used in this section are also defined in Table 2-.1.

2.2 CHARACTERIZATION OF-LINEAR DAMPING BEHAVIOR: COMPLEX MDULI

For many rubberlike or linear viscoelastic materials, the hysteresis

loop of the stress-strain relationship under cyclic deformation is not thin,

and may be thick, and is in the shape of-an ellipse [2.5]. The shape of the

ellipse doe3 not change greatly with changing amplitude, at least within a

certain range of conditions, and the area enclosed by ths loop is nearly pro-

portional to the square of the strain amplitude, other things being equal.

In this case, although the shape of the stress-strain curve is not a straight

line, the damping is nevertheless linear ahd a very convenient and simple

representation of the stress-strain relationship in algebraic form is possible.

namely the complex modulus (2.3,2.4]. Figure 2.1 shows a typical measured

hysteresis loop r2.61 for which these features are evident. Consider the

hypothetical elliptical hysteresis loop shown in Figure 2.2. The approximate

equation of this ellipse is:

a o [C/c 0 ( - (c /%)2I1/21 (2.12)
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TABLE 2.1. LIST OF SYMBOILS FOR sEC'TON 2. 1

SYMBOL DEFINITION

c Viscous damping coefficient

cc  Critical (viscous) damping coefficient
c/cc  Viscous damping ratio or fraction of critical damping
a Specific damping energy

of Energy dissipated In the total volume of the specimen
fn Resonance frequency

Difference between the two frequencies above and below the
resonance frequency

K Spring stiffness

M Man
o Amplification at resonance
T60  Time within which the vibration level of a system vibrating freely

at frequency fn decrases by 60 dB (reverberation time)
t0t2  Time points an integer number of periods apart
Us  Energy of vibration (strain energy)
V Total volume of the specimen
Xn,Xn+1 Two successive amplitudes of the free decay
Xl0 2  Space coordinates of two points in specim;a integral wave lengths

apart
At Rate of reduction of vibration

AN, Decibel attenuation coefficient rate in space
8 Logarithmic decrement
a y Logarithmic attenuation coefficient
e Strain

i Strain rate
e0  Amplitude of strain
e(x 1), e(x2) Strains corresponding to x1 and x2

17 Lost factor
hSystem damping coefficient or loss factor
Oy 3,patial attenuation coefficient
a Instantaneous stress

Amplitude of stress

Specific damping capacity
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Figure 2.1. -Typical experimentally determined material hysteresis loop.
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Figure 2.2. -Hypothetical hysteresis Loop.
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where :, c , C , and r are defined in Figure 2.2 and in Table 2.2, the list of0 0
s)mbols for this section. The nondimensLonal ratio, -. is simply the ratio of

the minor axis of the ellipse to the major axis, but later will be seen to be

the loss facto: of the material. In this equation, the + sign relates to the

loading part of the cycle and the - sign to the unloading part. The positive

square root is implied in Equation (2.12). Now, if we let 0 Sin ,w- t,

where w is the frequency, then Equation (2.12) becomes:

a a [Sin wt + n Cos wt I
(2.13)

a 0 [Sin Vt + Acos wt ]
0

since Cos wt is positive from (a = -90* to +900 (i.e., the loading part of the

cycle corresponding to the 4- sign), and Cos cat is negative from wt = + 900 to

+ 270 (i.e., the unloading part of the cycle corresponding to the -sign).

Since Cos (t is the first derivative of Sin (.T with respect to the time, t,

equation 2.13 car. be written in the form:

a- (a /0 ) ft + (/ljej) (de/dt)] (2.14)

Clearly, a I/e has the dimensions of a modulus and depends on the slope of the

-major axis of the ellipse. It reduces to the real Young's modulus for purely

extensional deformation of the specimen with q = 0, so we can write:

a - E [c + (n/ ji) El (2.15)

Finally, we introduce the notation that C = c e , in which only the real
part (or only the imaginary part) can represent the actual deformation as a

function of time. With this complex notation, equation 2.14 becomes:

a - E(Il -r in)c (2.16)

since c ie i -  This equation is the well-known complex modulus renresenta-

tion of inear damping material behavior under harmonic excitation. Note the
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TABLE 2.2. LIST OF SYMBOLS FOR SECTION 2.2

SYMBOL DEFINITION

E Young's modu!us

f Frequency
fo Frequency at temperature To

faT  Reduced frequency

G Real pit of the shear modulus

Go  Real part of the shear modulus at temperature To

T,T1,T2  Temperature

TO  Reference temperature

AT Temperature increment between To and T1, T2, etc.

aT Temperature shift factor

e Strain

Strain rate

Amplitude of strain

17 Loss factor

if Shear Ios factor

p Beam density

Po Beam density at temperature To

a Instantaneous stres

oo  Amplitude of stress
Circular frequency

restrictions; namely, that it must be harmonic motion and the complex notation

must be interpreted in terms of real numbers eventually. It can be shown that

this r,, known as the loss factor, is the same as the n defined earlier. In

practice, E and n are functions of frequency and temperat':re, and for any given

material there exists a threshold strain level beyond which the apparent values

of E and n also become dependent on the strain. The material behaviour is then

nonlinear.

Similar considerations apply to deformation in shear, so that the rela-

tionship between the shear stress and the shear strain, y, is:
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G(l + in")y (2.17)

where G is the real part of the shear m ;dulus and rl'v n.

2.2.1 Effects of Temperature and Frequency and Strain

One of the ways in which the large number of available linear damping

materials differ from each other is in the variation of E (or G) and n with

frequency, temperature and strain amplitude, and prestress or prestrain.

Temperature is by far the most important factor, since E can vary by as much

as four orders of magnitude over a narrow temperature range. The variation of

Young's moduluF E and loss factor n with temperature at fixed frequency and

strain amplitude are typically of the form shown in Figure 2.3. Throe distinct

regimes are observed; namely, the glassy region, the transition region, and the

rubbery region. In the glassy region, E is high and n is low. In the transi-

tion region, E varies rapidly with temperature and n is high. In the rubbery

region, E is low and varies quite slowly with temperature and n is low but not

as low as in the glassy region. At the very highest temperatures, irreversible

thermal decomposition of the material takes place.

Figure 2.4 shows the variation of Young's modulus E and n with frequency

at a fixed temperature and strain amplitude for a typical damping material.

Note that the modulus curve is the mirror image of that in Figure 2.3. The

same three distinct regions in the modulus curve exist with the same descrip-

tion applying. It should be noted that the property variation shown in Fig-

ure 2.4 occurs across many decades of frequency while the variation shown in

Figure 2.3 can occur across as small a temperature range as 20 degrees.

At high strain levels, the measured values of E and n begin to depend on

the value of peak strain amplitude, and nonlinear behavior begins to occur.

In this case, the complex modulus representation is useful only in a more quali-

tative sense since it represents an average value over a complete cycle and

over the volume of the specimen. Nonlinear behavior of materials will be

discussed later.
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2.2.2 The Time-Temperature Superposition Principle

The similarity between time- and temperature-dependent viscoelastic

properties can be seen in Figures 2.3 and 2.4. This similarity was first noted

by Leaderman [2.6] who observed that creep recovery data obtained at different

temparatuces could be superposed by horizontal translation along the logarithmic

time axis. This empirical time-temperature superposition principle was formal-

ized by Tobolsky and Andrews [2.7] and Ferry [2.8]. Its practical significance

is that experimental data taken over a limited range of time or frequency at a

number of different temperatures can be superposed to give a single composite

curve for a particular viscoelastic function, over an extended interval of

time.

The basis of the time-temperature superposition principle is that the

effect of a change in temperature on viscoelastic properties is to multiply or

divide the time scale by a shift factor which is corstant for a given tempera-

ture. Although when the principle was first applied there ;s no fundamental

theory to support its validity, it was subsequently found to Le a iogical con-

sequence of the flexible chain molecular theory of polymer via;oelasticity

[2.9].

Ferry [2.8,2.10] combined all temperahture effects into a single shift

factor, aT, which relates relaxation times at a temperature T to those at an

arbitrary reference temperature T . The effect of temperature on the modulus0

function such as G or E is expressed as the ratio

G '. * (2.18)

G PT
0 0 0

Since r is the same for all relaxation times, an increase in temperature from

T to T shifts a logarithmic G curve upward and to the right as shown in Fig-

ure 2.5 while the shape of the curve is unchanged. In considering the hori-

zontal shift direction for G, it should be noted that aT is negative because as

T increases intermolecular friction decreases. Therefore, aT = fo!f or f

f 0 /c, giving the shift to higher frequencies at higher temperatures. Similarly,
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Log f

Figure 2.5. Illustration of reduced variables time-temperature
superposition.

an experimental G curve determined at temperature T can be shifted to

temperature T by plotting log G -O- us log The choice of T is com-

pletely arbitrary. Shift factors, c , are determined empirically for each

temperature.

Thus, by using the superposition principle, it is possible to separate

the complex time and temperature dependence of a viscoelastic function in terms

of a function of time (or frequency) and one of temperature, aT(T). It is

clear that o is a dimensionless quantity, since it is used to reduce visco-

elastic data taken at various temperatures to the reference temperature T ;

the reduction procedure is often referred to as the reduced variable method or

simply the temperature-frequency equivalence method.

In uelug this approach for the Young's Modulus, E, (T o o/To)E and n are

plotted against the reduced frequency, fcxr. Often the density ratio po/o and

the temperature ratio To /T may be regarded as unity over the range of usefulness
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of the material. The preparation of "master curves" of E and i versus faT is a

very useful technique for extrapolation of data to frequency, or temperature

ranges where test data are not available. To prepare these curves, one must

first use the available data to estimat aT. This is often best accomplished

empirically by arbitrarily selecting an initial T and then judging the value0

of 'T needed to shift the curve of log E versus log f at teWperature Ti to best

match the curve at T , while at the same time matching curves of log n versus0

log f. The process is illustrated in Figuze 2.6 where the hypothetical curves

of log E and log n versus log f at various temperatures have been shifted as

indicated, and the appropriate "T versus T curve dran. If T is improperly

chosen, the matching will not be satisfactory and a new value should be tried.

2.2.3 A Reduced-Temperature Nomogram [2.11]

The graphs of E and n versus reduced frequency, f 0T, represents a funda-

mental relationship between the various parameters for many damping materials.

Its use, to directly read off the modulus and loss factor at any given

TEMPERATURE
T2  T, TO  T-1 T-2

SHIFTFACTOR
/

o ,1 i -,

0
-- I - --- - 1

t C

z
D :

0

1 0 0 E 2 i o, , Q ..I17 1o- 10 0o 0 Ho Z 0 0o id'
REDUCED FREQUENCY, f - Hz

Figure 2.6. - Illustration of the reduced-temperature nomogram.
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temperature and frequency, is tedious and inconvenient since it is necessary to

read off CtT, calculate f aT, and only then read off E and n. If the scales of

this graph are relabelled, a very simple monogram can readily be created.

Simply use the right-hand scale for frequency, as indicated in Figure 2.6, and

continue to use the lower horizontal scale for a T. For the line f - 1, which

i_ t~'e lower axis of the graph, then f O = T and hence the points correspond-

ing to each temperature To , T, T2 ... can be marked out since a is assumed

known for each Ti (i-1, 2...). Similarly, for the horizontal line one decade

higher, fcr which f = 10, then f eT = i0cT and again, since %,. is known for

each T, the points can be marked. If the process is repeated for f = 1000 or

ili9tever, the set of points corresponding to each T. can be filled in to form1

the set of diagonal lines shown in Figure 2.6. Once the nomogram is made in

this way, for the required f and T, move along the horizontal f line and along.

the iiagonal T line to the point of intersection (X). The point X corresponds

to tht, Rppropriate value of f av , at X, construct a vertical line intersecting

the E and n curves and read off the appropriate value.

Another use for the nomogram is to reduce data in the first instance with-

out directly having to estimate c for each temperature. For, if one selects

the proper position to correspond to T and selects the proper temperature

interval, AT, between T and T,, T., etc., the grid of lines can be usea to

position the test points, in effect by calculating f rT. according to the

assumed T and AT. Only one combination of T location and AT will give a0 0

satisfactory reduction of the data, just as in the reduced frequency approach.

If the chosen combination is not satisfactury, one must change the position

of T and/or AT.
0

In summary, the reduced temperature nomogram displays, on one plot, the

materials modulus and loss factor data. From the limited number ot data points

taken at specific temperature and frequencies, interpolations can be made on the

reduced temperature nomogram to obtain the material properties for any combina-

tion of temperature and frequency. The use of the nomogram in the design pro-

cedure is discussed in volumes II and III.
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2.3 DAMPING MATERIAL CHARACTERIZATION TECHNIQUES

The essential first step in using damping technology to control vibration

problems is the accurate determination of damping material properties. It is

important for the designer to have a general knowledge of the various character-

ization techniques so that an evaluation of the data obtained from the material

suppliers can be made and suggestions on how to conduct quality assurance

testing can be offered.

The following paragraphs will discuss several techniques for determining

the dynamic properties of materials. The techniques discussed are:

* Resonant Beam

* Dynamic Mechanical Analyzer

* Resonance Tests

• Rheovibron

• Progressive Wave

* Impedance

* Shear Rheometer

2.3.1 Resonant Beam Test

The resonant beam test technique is the test procedure which forms the

basis of ASTM standard E756-80. Either "digital" or "analog" systems can be

used to generate and handle data from resonant beam tests. Typical analog

vibrating beam test equipment is shown in Figure 2.7. The four types of

specimen beams (uniform, "Oberst," "modified Oberst" and sandwich), are shown

in Figure 2.8.

The appropriate beam specimen for testing a particular material is deter-

mined from the following criteria:

a. The uniform beam is used for stiff materials, such as epoxies and
p]astics, which are self-supporting at test temperatures, that is,
have Young's moduli E0 greater than 106 psi (6.98 x 10

9N/m2).
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Figure 2.8. - Resonant beam test specimens.
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b. The "Oberst" (nonsymmetric) or "modified Oberst"4 (symmetric) beams 2
are used for materials in which ED is between 10 psi (6.89 x 107 N/m )

and 106 psi (6.89 x 109 N/m2). As E falls toward the lower limit,
hD /h for these beams can increase.

c. The symmetric sandwich beam is used for materials in which ED is
between 10 psi (6.89 x 104 N/m2) and 105 psi (6.89 x 108 N/m). Since
the sandwich beam relies on shear of the damping material between two
support beams, it yields better results for this range of values of E .

The following equations are used in the ASTM standard to calculate the

value of ED or GD for various damping materials, according to the specimen beam

used in the test. The symbols used in the following equations are listed in

Table 2.3.

a. For an "Oberst" beam (with damping material coated on only one side
of the beam), the complex Young's modulus is derived from formulae
developed originally by Oberst [2.12]. These are:

z 2 " _+I [+ 2ne(2+3n+ 2n2) +ee 2 +h4 (2.19)

un en 3+6n+ 4n 2+ 2en3 + e2n4 (2.20
nD  + en 11+ 2en(2 + 3n + 2n2 ) + e 2n 4

where e = EDIE and n = hD/h. In these formulae, Z2 is calculated from the

measured resonance frequency, f , of thL nth mode of the damped beam and the" n
measured frequency, f of the undamped beam, The ratio e is then deduced

from equation 2.19 and ri, is calculated from equation 2.20, using the value

of e, and the measured value of modal damping, n" In fact, after some alge-

braic manipulation, the following equation for e in terms of Z2 and n can be

derived:

e -[(4+6n+4n2-Z2)n+ ( (46n4n2- Z2)2n2+4n4 (Z2-1 )1/2]/2n4 (2.21)
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TABLE 2.3. LIST OF SYMBOLS FOR SUBSECTION 2.3. 1.

SYMBOL DEFINITION

A.B Nondimensional parameters (equations 2.29 and 2.30)

b Breadth of bam
0 MedukU ratio ED/E

E YonWgs modulus of beam material

ED Real part of complex Younfs modulus of dampinl material

f Frequency (Hetz)

(El)*e  Equivalent complex flexural rigidity (equation 2.25)

fon nth natural frequency of ba bae

fn nth resonant frequency of damped ban

fl Lower halflor bandw dth frequency

fR Higer half-power bandwidth frequency
&V Total half-pows bandwidth OR -fl )

GO Real pert of complex shear modulus of damping material
e Shea parameter (equation 2.26)
h Thickness of bem

h Thickne of polymeric material
hR Thickness of root

L Length of bem
SLength of beam mot

n Thickness ratio (hD/h); mode number

T Temperature
TO  Reference temperature

Z Nondimensiwl patameter (equation 2.19)

U T Temperature shift factor
170) Extensional loss factor of damping matidal

r4i Shea lO factor
% Loss factor of beom specimen in nth mode

nt egen value for beam

Ph Density of beam; also denret in geral
PO Density of damping mer
4n nth circular frequency of bare bum
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These equations give accurate results provided that Z2 - I > 0.1. If

Z2 > 1.0, the error in e resulting from an error in Z2 becomes prohibitively

high.

b. For a "modified Oberst" beam (with damping material coated symme-
metrically on both sides of the beam) the complex Young's modulus is
deri*ved from the formulae

ED = E(Z - 1) / [en 3 + -2n 2 + 6n] (2.22)

n= z2 /z2 - !

n 2 (Z -1) (2.23)

where

Z2 . (1 + 20 D n/0) (frlfon)2 (2.24)

Again, the equations give reasonably accurate results whetever Z2 - I > 0.1.

c. For the symetrical sandwich beam, calculation of values of the shear
modulus, CD , and the loss factor, %iD, for the damping material is
based on a set of equations developed by Ross, Kerwin, and Ungar
[2.13]. In current notation the now classical equation is;

(EI)* + h(h + )2 (2.25)
e 6 1 + 2g*

where (El)* is the equivalent complex flexural rigidity of the three

layer sandwich [-(EI) 3 (I + inn) and g* is the shear parameter given

by:

G*L2
g*2 (2.26)

F Dhh E
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Equations (2-25) and (2.26) may be solved to given simple algebraic equations

for G and -n', namely:

2 P n (2.27)

(I-2A+ 2H) + 4(A%)

2 2 (.8
nDM An1[A - S-2(A - I) - 2(M)] 2.8

where

A -(f nIf on) 2(2 + O hD /ph) (B/2) (2.29)

and

B 1/6(1 + )hDI'n)2  (2.30)

for most polymeric materials in the rubbery and transition regions, ED I,3G

and r. ,-r

Most tests cover only the first seven modes of the cantilever beam. The

eigenvalues of the system --re given by:

2
I- 3.515

2
C2. 22.0345

2
3= 61.6970 (2.31)

2
9= 120.902

- i99-866

2
t6 2 98.560
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2.= 416.990

The eigenvalues define the relationship between the resonant frequencies of

the uncoated individual beams and the modulus E by the classical relationship

u 4on L/(Eh3/12) - Ell (2.32)

2.3.1.1 A Review of Specimen Beam Criteria

To obtain satisfactory test results, specimen beams must be prepared

carefully. 7aying careful attention to specimen dimensions helps avoid

machining difficulties atd helps to insure accurate test results. Figure 2.9

shows a typical bare beam, with appropriate dimensions indicated.

Recommended materials for specimen beams depend on the test temperatures.

For low temperature tests (below 300*F (149*C)), aluminum or steel bears can

be used. It is important to note that if a stiffer beam is used, clamping

conditions become more critical.

For high temperature tests (up to 2,000°F (1,093 C)), steel or superalloy

beams must be used.

The thickness of the damping material, hD, should not be less than

0.004-inch (0.127 mm). Preferably, the damping material should be thicker;

otherwise, it is difficult to control the dimensions of the composite specimen

beam.

2.3.1.2 Error Sources

For resonant beam testing, as for any measurement technique, errors can

arise from several sources. Errors in the measured complex moduli of the

polymeric material may be the result of:

* Errors in specimen preparation, such as poor adhesion, voids (air
bubbles), joint damping in clamping fixture, or nonuniform thicknesses.



b,0.450 MUST HtE PARALLEL TO SURFACE I
±.001

MUST BE PERPENDICULAR TO SURFACE I

- RADIUS MUST BE PARALLEL TO SURFACE I

BEAM TOP SURFACE

t.005 ROOTi

7.000 ±.002 sL -

8.125

SURFACE i: MUST BE FLAT AND
PARALLEL TO ±.0003 IN PER INCH
LENGTH L

Figure 2.9. - One half of a sandwich beam specimen with recommended
specimen dimensions.

& Errors in temperature control. The thermtcouple may not indicate the
specimen temperature accurately because ot thermal lag (insufficient
time for rt.aching thermal equilibrium or because of nonuniform tempera,
ture distribution within the specimen.

* Errors in measuring resonant frequencies, as a result of too high
frequency sweep rate, mechanical relaxation of the specimen, or low
level signals (hence the need to always monitor "input" and "output").

* Errors in measuring modal damping. Problems could include closely
spaced modes, extraneous damping sources (such as damping in the clamp),
or incorrect interpretation of nonlinear response as apparent increased
damping.

* Error magnification, because of unstable regions in the equations. For
example, in "Oberst" equations 2.19 and 2.20, atid "modified Oberst"
equations 2.22 and 2.23, the term (Z2 - 1)-i acts to magnify errors in
n or E. As Z2 - 1, the loss factor becomes infinite.: n

While conducting resonant beam tests, it is important to constantly be

aware of these and other possible sources of erroneous data, and to apply every

possible precaution while obtaining, interpreting, and utilizing the data.
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2.3.1.3 Test Data Set

For any beam specimen, each test "point" consists of a set of simulta-

neously measured values of temperature, mode number, resonant frequency, and

modal damping. The complete set of Or-a points for each test includes these

measured values for the undamped beams and for the damped specimen beams. The

raw test data for each damping material evaluated include the values of tem-

perature, da.ped resonant frequency, f n' the half-power frequencies, fL and

fR bandwidth, Af, and the modal loss factor, n.

It is important to evaluate the validity of raw test data being generated

by a particular resonant beam test. One way to evaluate the raw test data is

to examine the plot of nn, f n and fon versus temperature. This plot may be

generated manually as showr: in Figure 2.10 or automatically as part of the test

system [2.14,2.151. In either case, subjective evaluation of the test data

at this point is an important step in the testing process.

The valid raw data can now be used in conjunction with the arpropriate

set of equations to produce a set of material properties for the specific

temperatures and frequencies measured during the beam tests.

2.3.1.4 Advantages and Disadvantages

Advantages of this test set-up method include: (a) the system is

reasonably simple to use; (b) errors can be assessed and kept within limits;

(c) a single specimen can be used to cover a wide band of frequencies and

temperatures; (d) the damping materials is bonded to the beam which

simulates the actual use of the damping material.

Disadvantages of this test set-up are: (a) the test can be conducted

only at low strain levels; (b) the test is time consuming and costly.

2.3.1.5 Six Order Theory Data Analysis

An improvement in the material property data obtained from resonant beam

tests can be realized if the test data are reduced using 6th order beam theory

instea4 of the ASTM standard 4th order beam theory.
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Figure 2.10. -Typical graphs of fl , f n and f o
versus temperature.

The advantage of the 6th order theory is the ability to match the canti-

lever beam boundary conditions exactly, therefore reducing the error when

analyzing the test data. The development of this analysis is detailed in

References [2.16] and [2.171.

The basic assumptions for the analysis are:

* The beam deflection is small and unifotm across a section

e The axial displacements are continuous

e The base and constraining layers bend according to the Euler
hypothesis
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* The damping layer deforms only in shear: (ED<<E)

* Longitudinal and rotary inertia effects are insignificant

The variation in the material properties, obtained by the 4th and 6th order

analysis, is shown in Figures 2.11 through 2.14. Figure 2.11 shows the varia-

tion in material loss factor and figure 2.13 shows the variation in material

modulus for the data taken from the second mode of a cantilever beam. The

trends seen here are typical results. Figures 2.13 and 2.14 illustrate the

same type of data variation except that the data are for mode six of a canti-

lever beam. As would be expected, the error reduces as the mode number

increases because che importance of the boundary conditons is reduced.

In general, the loss factor values predicted by the 4th P-der theory are

lower than those predicted by the 6th order theory, primarily near the maximum

loss factor. The 4th order theory also predicts higher modulus values in the

rubbery region and lower modulus values in the glassy region. A comparison of

the 4th and 6th order data in a reduced temperature nomogram format is illus-

trated in Figure 2.15. As can be seen, the major differences occur in the

glassy and rubbery regions. The major disadvantage of the 6th order data

reduction is the increased computer cost that is directly related to the

increased complexity of the analysis.

The sixth order theory was used to reduce the damping material data for

the design guide in instances where the materials were tested in a sandwich

configuration. A description of the 6th order lata reduction used in the design

guide is given in Volume III.

2.3.2 Dynamic Mechanical Analyzer

The dynamic mechanical analyzer is a valuable tool in a polymer labora-

tory. Among the various tests that can be run on the machine is the test to

determine damping properties. The following paragraphs explain how to obtain

damping properties using the Dupont 981 Dynamic Mechanical Analyzer, DMA.
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Figure 2.11. - 4th and 6th order variation in material

loss factor.

2.3.2.1 The Test Set-up

A schematic diagram of the DMA system is shown in Figure 2.!6. The

mechanical portion of the systems consists of two parallel balanced sample

support arms which are free to oscillate around flexure pivots. The arms are

connected by the sample. The instrumentation usd in the DMA test is shown in

Figure 2.17. This test set-up can be used for t nstant temperature or rangv

temperature tests.

A servo control system controls the power input into the electro-magnetic

drive to maintain a constant amplitude le'.el vibration on the driven arm. The

displacement is measured by a Linear Variable Differential Transducer, TXI)T.
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Figure 2.12. - 4th and 6th order variation in material modulus.

The test set-up incorporates an X-Y plotter, used to plot both the power

into the driver and the frequency of the system versus temperature. These

measurements are used to calculate the complex Young's modulus, E(I + in D ) , for

the material.

2.3.2.2 Specimen Selection Criteria

-The specimen for a DMA test is generally rectangular. The nominal speci-

men dimensions are shown in Figure 2.18. Experience has shown that two speci-

mens are required to obtain the most accurate data across the entire test

tmperature range. The lower temperature range data are best collected with

a specimen which has an aspect ratio of approximately 10 to 12. The high tem-

perature data, just below maximum damping temperature and above (see Fig-

ure 2.18), are most accurately obtained from a specimen with an aspect ratio

of 4 to 6. Aspect ratio is defined as length/thickness, ,i.
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Figure 2.13. - Comparison of 4th and 6th order modulus in mode five.

2.3.2.3 Data Reduction Equations

The sample and the pivot arms, as shown in Figure 2.16, form a compound

resonance system. Because of the low natural resonant frequency of the arm-

pivot system, the resonant frequency is dependent almost entirely oii the con-

figuration and modulus of the sample. In oscillation, the sample is deformed

via the geometry shown in Figure 2.19. In the equilibrium position before

the oscillation, the sample, the centerlines of the two arms, and an imag-

inary line connecting the centers of the two flexure pivots form a rectangle

represented by the broken lines. The deformation of the specimen is obtained

from standard frame analysis except that the clamps for holding the specimen

extend a distance D beyond the center i1ne of each pivot arm toward the

opposite arm.
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Figure 2-14. - Comparison of 4th and 6th order loss factor in mode five.

If the compound resonance system is deflected away from the equilibrium

position to a new position (represented by the solid lines in Figure 2.19),

the two ends of the sample remain parallel to each other and perpendicular to

the arms. The center of gravity of the sample and the arms, however, trans-

late to new positions. During each cycle the sample is subjected to an alter-

nating flexural deformation. The solution for the dynamic equation of motion

for the system [2.181 gives the relationship between Young's modulus and

frequency:

E= ( 4 122 J - K) (.3

2[- + P]
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where E = Young's modulus (Pa), f = DMA frequency (Hz), J = Moment of inertia

of arm (kgm 2), K =Spring constant of pivot (NWm/rad), D = Clamping distance

(i) W Sample width (mn), t = Sample thickness (m), and L = Sample length (mn).

Sample loss factor is calculated from:

CV (2.34)
f 2

where V = DKA Damping Signal (mV), f = DMA Resonant Frequency (Hz), and C

System Constant (-0.25 Hz 2ImV). See also the list of symbols in Table 2.4.
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GEOMETRY

Figure 2.16. -Test geometry for Duont 981 dynaic
mechanical analyzer (DMA).

2.3-2.4 Error Sources
The principle error in DMA damping data is a thermal lag problem. Great

care must be exercised not to sweep temperature at a rate of more than 3-6*F
(2°3 per minute. Other errors to watch for are:

e Improper aspect ratio

9 Improper clamping pressure or alignment

( Improper temperature read out due to poor thermocouple location

2.3.2.5 Advantages and Disadvantages

The advantages of this test procedure are:

* Small samples are required, this is particularly helpful for newly
synthesized materials where only a few grams are available.
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Figure 2.18. -Specimen dimensions aa suggested k values

for the test regions.

* The samples do not need to be bonded to a metal beam.

* The temperature range scanned runs from -1894F (-120°C) to +932"F

(+500"C).

* Data are obtained quickly; zhe entire temperature range can be

scanned in a few hours.

* The amplitude of oscillation can be varied so that linearity of

viscoelastic response can be verified.

* Data are recorded continuously so that the modulus 
and loss factor

are plotted as continuous analog functions of temperature.
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Figure 2.19. - Sample deformation in DuPont 981 DMA apparatus.

The disadvantages of the DMA are:

9 Only a single resonant mode is measured.

* The frequency range of measurement is quite limited.

a The temperature accuracy of the data has been known t9 ca' -L a problem-

* The DMA test does not accurately reflect the structural behavior of a
polymer, since the polymer is not bonded dire rly to a metal substrate
as it would be in application.

2.3.3 Pcsonant Tert

The following paragraphs describe the resona-it tes, for measuring the

damping properties of materials. This set-up is perhaps the most simple pro-

cedure to implement.
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TAKLE 2.4. ABBREVIATIONS AND LIST OF SYMBOLS FOR SUBSECTION 2.3.2

SYMBOL DEFINITON

OKA DYaWmk MvhW Aftpf
LVOT LUMW Vaihh D"IffIN~ Trmfumr
C SysismMWM(t -@isHz 2ImV)
0 CbrnsmP cs
E Yeusgs mdu

f DNA msw frimac

K sod"n P - - t d -j
L Sme"N
R ArmkwOg

V DMA g*"spd

Du~ffve m amplea is phInm

2.3.3.1 The Test Set-Up

The instrumnentation and test set-up for the resonant test are shown in

Figure 2.20. The types ofl specimens used are illustrated in Figure 2.21.

A continuous sine sweep oscillator is used to power an electromagnetic

shaker which excites the test specimens. An accelerometer monitors the response

of the shaker head and another accelerometer monitors the response of the test

specimen. The system incorporates a frequency counter, an oscilloscope, and

a dB meter to make the required measurements. The measurents made are:

1) shaker acceleration, 2) test specimen acceleration. 3) resonant frequency,

and 4) temperature. Fromn these valuzes complex Young's modulus E(I + ib) or

shear modulus G(1 + i&T) can be calculated.
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2.3.3.2 Specimen Selection Criteria

The criteria on specimen selection are quite simple. The specimens should

be designed to have a height to diameter ratio greater than two to avoid error

resulting from nonuniform strain distribution in the specimen. Specimen design

must also consider the possibility of a standing wave developing in the specimens.

The data reduction equations are invalid for a test where standing waves occur.

2.3.3.3 Data Reduction Equations

The data reduction equations are:

!1

Dandr (A2 1) 2 (2.35)

for the loss factor in both tests,

ED = 41T2 f 2 (M + =io/3)/S(l + O 2 /S2  (2.36)n

for the tension - compression resonance test

GD 41T 2f 2T(M + m /3) (1 + -2/36R2)/S (2.37)
Dn o

and for the shear resonance test, respectively. The symbols are defined in

Table 2.5. These equations are developed in Reference 12.19]. A modified

version of the shear resonance test method is described in Reference [2.20].

2.3.3.4 Test Procedure

The test procedure is to place the test specimen on the shaker with a

mass, M, attached to the polymer. A frequency sweep is conducted to locate

the resonant frequency. Once the resonant frequency is established, the

required measurements of shaker acceleration, specimen acceleration, tempera-

ture and frequency are made. Varying the input level allows measurement to

be made at various strain levels. Varying M allows treasurements to be
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TABLE 2.5. LIST OF SYMBOLS FOR SUBSECTION 2.3.3

SYMBOL DEFINITION

A Ratio of resonant mass acceleration to shaker acceleration

E Young's modulus of damping material (real)

f Excitation frequency
fn Resonant frequency of mass
G Shear modulus of damping material (real)

2 Length of damping material (shear test)
M Mass
mo  Mass of viscoelastir, material in resonance test
R Radius of gyration of shear specimen about horizontal axis

(=R/ 12 for a rectangular section)
S Load of carrying are of damping material (extension test) or

total are& of damping material in contact with resonant man
(shea test)

S1  Wetted surface are (non-load bering) of damping material
(extensional test)
Shape factor

Haight of specimen (spring length) in extensional test or thickness
of specimen in she test

171) Damping material lox factor (extension)
7 1 D  Damping material lots factor (shear)

*Phase angle between resonant mass and shaker table accelerations

made at various frequencies, and placing the system in an enjirornmental chamber

allows temperature variation.

Results of error analysis in Reference [2.21], supported by test results,

indicate that damping measurements can be made with the resonant shear test

method at frequencies on either side of the resonant frequency, but not below

0.7 times the resonant frequency for a material loss factor of 0.5. Th6 below

resonance error is greater for a lower material loss factor. It is, 'x ever,

necessary to measure phase angle * between the mass and the shaker table. The

loss factor is obtained from

I Sin (2.38)
SA- Cos
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and the resonant frequency f , for use in equation 2.37 from

n

f = f ( 2 A A Cos ) (2.39)
(A2 - 2A Cos 0 + 1)

where f is the excitation frequency. Test time is saved with this procedure,

since exact tuning onto resonance is not required. It is especially useful

when investigating the effect of strain level on the shear modulus and loss

factor since the resonant frequency tends to change with increasing excitation

level.

2.3.3.5 Error Sources

Errors in the resonant test system can result from:

" Poor specimen geometry

" Improper temperature measurement

" Poor signal-to-noise ratio of the accelerometers.

Care should be taken in mernuring temperature of the specimen. If the

system is allowed to dwell at resonance for a short period of time, there will

be a temperature rise in the polymer material due to the energy it is dissi-

pating. If not detected, this will result in a thermal shift of the data.

This effect can be minimized by off resonance testing, making use of phase

data.

2.3.3.6 Advantages and Disadvantages

The principle advantages of this test procedure are:

* A simple test to set-up and run

* Simple data reduction equations

9 Capability to assess the effect of strain amplitudes
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$ Does not need to be tuned exactly to resonance if phase difference
is measured

The disadvantages are:

* Mass must be changed to change frequency

* Frequency limited by the frequency limits of the shaker

2.3.4 The Rheovibron

The purpose of the Rheovibron is to measure the temperature dependence

of the complex modulus of high polymers in both amorphous and crystalline

states at a constant frequency. A simplified diagram of the equipment and

concept are shown in Figure 2.22.

The basic principle behind the operation of the Rheovibron is the fact

that a sinusoidal tensile strain applied on one end of a test sample in a

viscoelastic state will generate a sinusoidal stress at the other end. There

will be a phase difference between the two signals of 6. The Rheovibron is

built to read Tan 6(=n) directly. The storage modulus can then be calcu-

lated from the values of the stress, strain, and 6.

The system equations are very straightforward.

nD Tan 6 a1 a2 (2.40)

E E* Cos 6 (2.41)

E* 2.0( 10(D X 9) (L/S) (2.42)

The symbols are defined in Table 2.6.
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TABLE 2.6. LIST OF SYMBOLS FOR SUBSECTION 2.3.4

SYMBOL DEFINITION

A Value defined from amplitude factor in measuring tanS

0 Value of dynamic force dial in measuring tan 6

E, Storage modulus

E* Dynamic elastic modulus

L Sample length

S Sample section ae
aI  Stress transducer vector

a2  Strain ransducer vactor

The test procedure consists of attaching both ends of the sample such as

fiber or plastics film to two strain gages of unbonded type (Figure 2.22, one

of which is a transducer of displacement (MODEL T.7) and the other of which is

a transducer of generated force (MODEL T.1). After the absolute values of

the electrical vectors transduced from force and displacement are adjusted to

unity (full scale of meter), vector subtraction is made by changing the con-
nection of the output circuit of two strain gages (Figure 2.22). By this

operation the value of tan 6 can be read directly from the meter.

The dynamic modulus can be easily calculated from the readings of the

dividers G1 and G2 in Figure 2.22.

The advantages of the system are:

4 The data are obtained at a constant frequency

0 The material loss factor can be read directly

The disadvantages are:

* The data are operator dependent

* The test is time consuming

* The test apparatus is temperature limited
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Additional information for the Rheovibron is in Reference [2.22].

2.3.5 The Progressive Wave Technique

The progressive wave technique has been used widely to determine the

dynamic properties of rubber components. The block diagram of the test equip-

ment is shown in Figure 2.23. An electromagnetic shaker is used to drive a

rubber test specimen at the bottom end while the top end is suspended under

constant tension. A phonograph cartridge is used to measure the mechanical

response of the vibrating strip. The shaker, test specimen, and cartridge

are placed in an environmental chamber. A frequency synthesizer powers the

sbaker and controls the frequency of the test. The network analyzer measures

tOe phase angl2 and amplitude differences between the reference output signal

and the measured response.

The basic system equations are:

nD  = 2 y/(i-y) (2.43)

E2 pC2(1 _ y2)/l + y2)2 (2.44)

Y = 6.59 A/P (2.45)

where

C = 360 FL/P

A = amplitude

P = phase angle

C = sound speed

F = frequency

L = length

p = density
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Additional information on the progressive wave technlique is given in

Reference 12.23].
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2.3.6 Impedance Testing

There have been many variations of the mechanical impedance technique

suggested and used to measure viscoelastic damping material properties [2.24,

2.25, 2.261. The general purpose of the impedance techniques is to measure

the complex modulus properties of viscoelastic materials as a function of

temperature and frequency while operating the system in a nonresonant condition.

One experimental set-up for impedance measurements is shown in Figure 2.24.

The system consists of an electromagnetic shaker used as the driver, an impedance

head to measure the force and acceleration at the driven end of the material

sample, the material sample and a large taass. The dynami signals from the

impedane head should be measured with a digital Fast Fourier Analyzer.

The wave equation governing the motion of the material sample shown in

Figure 2.24 can readily be solved, subject to the boundary conditions of a

known, or measured, input displacement, U, at the point X - 0 and acceleration,

U, equal to F/M at X = L (the sample length), where F is the. force. The ratio

of displacement to force at the transducer end, i.e., the compliance, can be

shown to be

h B Cos a- a Sin a(

F X D (a aCos a + B Sin a'
x--

where U is the displacement, F the force, E = ED (I + i%) is the complex

modulus, A and h are the cross-sectional area and length, respectively, of the

material sample. ED is the real part of the complex modulus, and

Ct = (P 2  %*)1/2 h; B - Ph A/M (2.47)

* where;

W is the frequency, P material density, M mass of attached weight.

Data obtained using this method compare well with data obtained from

other procedures. The technique is useful for materials with loss facLors
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Figure 2.24. - Wave equation governing the notion of material sample.

varying from about 0.1 to 1.5 and Young's Hoduli varying from about 200 to

200,000 psi (1.38 x 106 to 1.38 x 109 N/u2).

Accurate data are obtainable if care is taken in selecting specinei.

geometry, temperature measurements are exact and the strain level is in the

linear region. Since the material is in a bulk form, energy dissipation can

cause a temperature rise in the material.

The principle advantages of chis procedure are the simple test set-up

and the capability to assess various strain amplitudes.

2.3.7 3H Piezoelectric Oscillatory Rheometer

The 3M Piezoelectric Oscillatory Rheometer provides measurements of the

shear properties of a wide variety of solid materials, such as filled and

unfilled rubbers, psa's and molten plastics, under controlled conditions of

temperature and frequency.

The Piezoelectric Oscillatory rheometer permits analvs4s of these mate-

:als ander conditions of shear over a rigidity ravve of T0 to 108 N/i2 -
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2.3.7.1 Test Set-,'p

The heart of the rheometer system is a shear generator shown in Figure 2.25.

The sample under test is mounted between a driver plate which applies a shear

force to the sample and parallel monitor plate. A monitor trarsdue". converts

the force that is transmitted through the test sample into a proportional

voltage which is used in calculating the shear modulus of the sample.

Auxiliary equipment that is required to supply the driving power and tem-

perature controls for the shear generator and to amplify and to measure the

output from the monitor transducer is listed in Table 2.7. The entire test

set-up is illustrated in Figure 2.26.

Specifications for the Piezoelectric Shear are:

" Test tceaperature range: -112*F (-80*C) to 266*F (+1300C)

* Test frequency range of plus or minus one degree phase angle drift

is as follows:

G' < 106 Nm 2  30 to 2000 Hertz

G' > 106 NIm2  5 to 2000 Hertz

" Amplitude of Oscillation - approximately 600 angstroms at approxi-
mately 8.7 volts RMS stack driving voltage

" Test specimen size:

0.197 in (5 mm) < length < 0.394 in (10 mm)

0.09 in (2 mm) < width < 0.157 in (4 mm)

0.010 in (0.26 mm) < thickness < 0.059 in (1.5 mm)

" Viscoelastic Range:

7.25 psi (5 x 104 N/m
2 ) < G" < 2.9 x 104 psi (2 x 108 N/m2),

0.04 < tan 6 < 12.0

" Precision:

Estimated to be plus or minus 5 percent for both G" and tan 6
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Figure 2.25. - Shear generator diagram.

M Hinlmum voltage output from high-impedance amplifier for adequate

signal to noise ratio is approximately 20 millivolts

* Degree of Farallelism of sample gap is as follows:

For sample thickness > 0.010 in (0.25 mm) gap parallelism is not

critical (i.e. ±0.0012 in (0.03 m))

For sample thickness > 0.005 in (0.13 mm) gap parallelism 1-

critical

In the above specifications, G' is the shear of storage modulus, G" is
the shear loss modulus and Tan E is the loss factor.
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TABLE 2.7. AUXILIARY EQUrIPMENT REQUIREKENTS

GueripimnType Sdection Ck"Curkw

Dac~atar - HP 1320S Froquy Srymobiz

Hith IMPedanc SPecia mode mnoCta and a.Frequeac ramp I to IN Hz.
Amplifar daldpd by 3M1 *aciflcfti for mm b. IBMt -ImI I at 1 010 Oh

*itb die HELMSS RhN1ur (or Fulm).
C. Flow hWft f N M I down

Phg MgtW + Dleunte- Model 30Set a Pcit to±&MS -50 -
Nadok AMdYzw pislefti. Now Jmt" Plno 50kHz. to ±M - 50 kHz

t500 kHz
DOnetz - *da 305 MM"0 L. lawt be -10 Mv,= VMS

Flka 0iod Vglbie ISS IN kz (-alum 15kHz)

40VRNhwlS VR -

dFwmq ftsaP-2Z -
706 kilL

T§MPuMa% TSweY.
Controlle Flkem 2180A DW Tlmmoneur

Oic~lacopeTewOmix Type SSIA

Model 43 Tennind

NOTE: The oscilWi not M siMUOIa pert of ft Rhesomeursm
but is usedfhr rwadlvoa pwm.w

2.3.7.1 Sample Preparation and Test Procedure

Rubbers and plastics saples are tested in this instrument. The saple

prepartion is:

1. Loosen clamping screw for monitor plate

2. Place sample between probe and driver plates

3. Carefully tighten screw
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The final sample thickness should be between 0.010 inch (0.254 amm) to

0.040 inch (1.016 mm)

The measurement procedure is:

1. Measure hample thickness to nearest 0.001 inches (0.02, am) with a
micrometer.

2. Place P suitable set of shims in instrument so that sample will be
squeezed about 10 percent when clamped in place.

For example, if the sample thickness is 0.030 in. (0.762 an) use a
set of shims that will result in a final thirkness of 0.027 in.
(0.686 mm).

3. Cut a 0.394 in. (10 m) by 0.276 in. (7 m) (maximum) piece of
rubber.

4. Place rubber piece between probe and driver plates.

5. Tighten clamping screw.

6. Close chamber door.

7. Allow temperature to come to equilibrium.

8. Take readings with digital voltmeter at desired frequencies.

9. Take readings with phasemet-- at desired temperatures.

10. Repeat Steps 7 through 9 for all desired temperatures.

For oscilloscope measurements use emWlitude, V, and phase angle, 0.

The shear moduli are obtained by the following equations:

k bG' - V 10 S Cos 6 (2.48)

G' = Vk 1 0 b S Sine (2.49)

TanO = G"/G' (2.50)
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where:

G' = shear storage modulus

G" = shear loss modulus

Tan6 = loss factor

V = output voltage measured on DVM (volts)

k = slope of least squares log-log calibration

0 = phase angle measured on phasemeter

S = sample shape factor

The sample shape factor is given by

S t! b/bt

where:

t s shim thickness (cm)

t = sample thickness (cm)

1 - sample length (cm)

b - sample width (cm)
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SECTION 3

FUNDAMENTALS OF DAMPING TREATMENT

The effects of temperature, frequency, and strain on the basic material

properties of viscoelastic material have already been discussed. The usual

design problem centers around the question of how to use a material with

these properties to introduce significan, amounts of damping into a structure

having an undesirable resonant response characteristic. "Significant amount"

of damping is the key phrase here, since it is the intention to increase the

material damping in the structure to a level where it is much higher than the

damping from all other sources, suc , as the damping from joints and acoustic

radiation. To accomplish this, Lhe damping material must be used in a config-

uration that w'11 assure that sufficient energy is dissipated, D , comparedS

with the elastic energy stored in the structure or, as already shown, the loss

factor, n of the structure or the bystem (equation 3.1) needs to be increased.

D
S

2s 2rUs  (3.1)

The elastic strain energy in a simple specimen (or structure) can be

expressed as the area under the stress-strain curve integrated over the

volume of the specimen.

us = focdv

or f (3.2)

U 2Us = j E i_ dv

E, a and c are the Young's modulus, the dynamic stress and the dynamic strain

of the specimen (or structure), respectively. The integration is taken over

volume, v, of the specimen. The symbols used in all equations up to the end

of Section 3.1 are listed in Table 3.1.
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TABLE 3.1. LIST OF SYMBOLS UP TO AND INCLUDING SECTION 3.1

Athickness ratio parameter (equation 3.67)

A', 8' terms defineo by equations 3.98 and 3.99 respectively

a length of plate

b width of beam or plate

C1, C2 , C3, C4  mode shape constants in equation 3.29

o flexural stiffness Eh31121. )

Dc flexural stiffness of coated plata

0Do 02 flexural stiffness of damping material and plate about the coated
plate neutral axis

Pd  energy dissipated in damping material

us  energy dissipated in structure or system

E Young's modulus of beam or plate material

E'  imaginary part of complex modulus

E' real part of complex modulus

Ec Ic  Equation 3.78 (= E2 12 + ED 1O)

ED damping material Young's modulus

Er modulus ratio ED/E 2 for beam

Ell E2, E3  Young's modulus of beam material

e modulus ratio ED/E for plate

FaT  reduced frequency

fcmn natural frequency of coaxed plate

fcn natural frequency of coated beam

fmn natural frequency of bare plate

fn, f2n natural frequency of bare beam

9 acceleration due to gravity

h thickness of beam or plate

h 0  damping inateial.thickness

hol, h0 2  two-layer damping material thickness

hr thickness ratio h01h2

3-2



TABLE 3. 1. LIST OF SYMBOLS UP TO AND INCLUDING SECTION 3. 1 (Continued)

h2  thickness of beam segment

I, Ii, 13 second moment of area of beam about the bare beam neutral axis

1o  second moment of area of damping material about the coated beam neutral
axis

12 second mcment of area of beam about the coated beam neutral axis

i . square root of minus one: as a subscript, beam segment i

J, if constants (characteristics of material)

k wave number (equation 3.26)

kn wave number at iesonance

L length of beam

Mx  moment in beam

m, n mode numbers

P(x) tranew loading on beam

P(x), P(x.t) pressure acting on beam

P(x. y) pressure acting on plate

Q ratio of resonant displacement to static displacement (amplification
factor)

q roots of the chaacteristic equation

R radius of curvature

T,s thickness related constants (figure 3.10)

T temperature

TO  reference tempeature

Us  elastic strain energy in structurt or system

V shear force in beam

v. vol volume

w, wix) displacement of beam parallel to z axis

w, w(x. y) displcement of plate parallel to z axis

Wn(x) mode shape

wn modal intensity
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TABLE 3.1. LIST OF SYI1BOLS UP TO AND INCLUDING SECTION 3.1 (Continued)

w1, w2, w3  beam segment displacements parallel to z axis

x, y. z coordinate axes

a.P3 lengths associated with partia: coverage (Figure 3.12)

7 thickness ratio parameter (equatior 3.74)

Ax length of fiber along neutral axis in beam element

Ax' length of fiber at a distance from neutrel axis in deformed beam element

AO angle sub tended by deformed beam element

e localized dynamic strain

EX  dynamic strain in beam or plate parallel to x axis

1 loss factor (ratio of imaginary part to real part of modulus E"IE')

damping mateial loss factor

nDED loss modulus of damping material

loss factor of the stMctre or system

nienvalue for the nA mode

PD mam per unit lth of damping mamial

Ps mass per unit length of coated bem

A .;, mmu per unit qth of ber brn

V PoisWos ratio

p denity of beam or plate material

PIDdensity of damping natena

a dynamic sam

ox. Oy stm lto xand vaxes

On (xitLi) mode shape function (eqiation (eiuaton 3.85)

W circular irluecy

( nr'I2n ncur, k frency of te bate bm
n natural circular fquency of the coated bem
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The energy dissipated in a specimen has been shown by Lazan 13.11 to be

D = jondv (3.3)- I

where J and H are constants characterizing the material. On considering the

case of a "linear" viscoelastic material, where li = 2, the energy dissipated

in the viscoelastic material is

D s f E DE2dv (3.4)

where the integral is performed over the volume of the viscoelastic material.

The important point about Equation (3.4) is that the energy dissipated

depends on two kinds of terms. The "rDtEt term (loss modulus) in the

integral is a damping material property term, and the "C 2,, term is a mea-

sure of the localized dynamic strain, which is a function of the geometry of

the damping treatment and the deformations associated with particular modes

of vibration of the structure.

Thus the optimization of a damping treatment involves not only tbe proper

choice of a damping material, but an understanding of the effects of the geom-

etry of the damping treatment and the modal characteristics of the structure

being damped.

In this section three basic categories of damping treatments, namely,

free or unconstraiied layers, coi strained layers, and tuned damping devices

are considered. Each of these damping concepts is discussed in detail start-

ing with an emphasis on the qualitative concepts of damping of simple struc-

tures and the relationships between the material properties and the geometric

arrangement of each type of damping treatment and ending with detailed >eam

and plate analysis. Finite element analysis procedures are contained in

Section 5.
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3.1 FREE LAYER DAMPING TREATMENTS

The free or unconstrained layer treatment is the simplest way of intro-

ducing damping into a sheet-metal type of structure. The creatment consists

of a simple layer of an 3ppropriate damping material bonded to those surfaces

of the structure which are vibrating primarily in a bending type of mode, as

shown in Figure 3.1. As these surfaces hend, the treatments on the surfaces

arc deformed cyclically in tension-compression snd so dissipate energy. The

simplest way to visualize this configuration is to thi.k of polymeric coating

on a sheet metal panel to reduce impzct noise.

In analyzing these types of treatments it is usually appropriate to a-lume

that normals to the undeformed neutral plane of the structure remain straight

and normal to the deformed neutral plane. Or, in other words, we can ignore

TREATMENT Wij

I U1

Figure 31. - Free layer dauptng treatrnts.
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shear deformations and use simple beam or plate bending theory for layered

structures 13.2]. This means that the localized strain will depend strictly

upon the distance from th- neutral bending plane and on the localized curva-

ture of the structure caused by dynamic bending. Thereffo.re, since the magni-

tudes of strain are generally limited by practical thickness restrictions, a

designer must maximize D as expressed in Equat-ion 3.4, by -;electing a damping

material with maximum loss modulus rX Obvi,-usly good free layer damping

materials are both stiff and exhibit high damping loss factors.

The typical variation of Young's modulus Z a I osfco ihtmea

ture, for a fixed frequency and strain level, is illustrated in FJIgure 3.2.

The area between the dotted lines indicates the temperature range in which a

material would be most useful as a free-layer damping treatment. For most

I ~ .oeiaticpolymers this temperature range is fairly narrow, on the order

j GaIMY Region Transihio., Region Ruebsy Region

Fifelae rawt

Iue3 pimmt-grtr ag e
3-



of about 50F° (28C') or less. An obvious question is how can high damping

be obtained from a single free layer over a fairly wide temperature range?

This question has been partially resolved through the development of polymer

blends that exhibit more than one glass transition temperature 13.31. Fig-

ure 3.3 shows the variation of the real part of Young's modulus and loss

factor for a polymer blend of three materials, compared with similar data on

two commercially available damping materials with single transition tempera-

tures. It can be seen that the polymer blend literally has three peaks in

the loss factor-temperature curve. The composite loss factor, for a fixed

thickness ratio for each of the three materials, is shown in Figure 3.4. If

the design criterion is maximum system loss factor, then material A would be

the designer's choice. If the minimum required system loss factor was 0.1,

10 M.8' A !

"-ena S' E

0

03

0 1 200 3

Tempumur (*F)

'Fiure 3.3. - Typical variation of -material properteries
for a polymer blend of materials.
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*2 /

2 /h - -u f S M M

0 100 2W 30

Teupwemo -O

Figure 3.4. - Fixed thickness ratio (h /h 2 ) 2 2 for single
materials and a poimer lerd.

material A would have an effective temperature range from 50F (10*C) to 125F

(520C), material B's effective temperature range from 80F (27C) to 95F

(35*C) while the polymer blend's range would be from 30YF (-lPC) to 125F (52*C).

If --.tI and maximum temperature range were the design points, the poly-blend

would be the proper choice.

Another way of broadening the temperature range, over which the maximum

damping can be achieved by the unconstrained-layer damping treatment, is by

applying multiple materials with peaxs in the loss modulus occuiring at dif-

ferent tenperaturts. For ihstance. if the te=perature range for which the

treatment has to oeate is from 501 * (10*) to 1500F (66*C), it may be neces-

sary to select one material that has its optimum value around 1F (27C) and
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another material that has its optimum value at approximately 120*F (49°C).

Then it will be possible to place one material on each side of the structure

and their performance can be combined to give wide temperature coverage. It

is also possible to use a multiple layer system as shown in Figure 3.5. Pro-

vided that layer 1 (nearest to the structure) has the higher temperature of

peak damping, the wide range damping performance shown will result.

Another method of optimizing a free layer damping treatment for a partic-

ular structure is to carefully select the locations of the damping treatment.

Little, if any, benefit is gained from damping material located near nodes or

locations of minimum bending moments. For instance, it has been shown [3.4]

that for a fixed weight of damping material, applied to a simply supported

beam vibrating in its fundamental mode, maximum damping occurs when the damp-

ing mrcerial is distributed over the center 40 percent of the beam.

.LAYER LEh DI

E* 1
LAYER .. hA

E STRUCTURE

3--I-

- LAYER I
---------------------------------LAYER 2

B.8TH LAYERS

TEMPERATURE

Figure 3.5. - Multiple layer broadening effect.

K 3-10



Although free layer damping treatments are often thought of in terms of

elastomeric or rubberlike polymers, the concept is not limited to this class

of materials. It has been shown that many porcelain enamel coatings have

extremely high loss moduli at elevated temperatures [3.5 - 3.12J. As shown

in Figure 3.6 a typical porcelain enamel exhibits material characteristics as

a function of temperature similar to damping polymers. In fact, as illustrated

in Figure 3.7, the peak loss modulus of some porc lain enamels is typically

much higher and the temperature bandwidth wider than for even an efficient

polymeric free-layer damping material. The implications of this point are quite

significant when one considers the damping of high-temperature structures such

as components of jet engines.

11 . ...... 10.0

1010 1.0

00

log , 0,.10o

/E 0

30 108 0.01

400 SWO 6DO 700

TEMPERATURE - 0C

Figure 3.6. - Typical variation of material ptopertes for
Corning 8871 (Ena-el) at 200 Hz.
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Techniques and analytical methods to predict the effect of free-layer

damping treatments on the vibrational response of beams, plates, and stiffened

structures follows.

3. 1.1 Euler-Bernoulli Beam Equations for Free Layer Damping

To date, a majority of the damping analyses have been based on 4th order

beam theory. In the following paragraphs, a review of the basis of this

theory is presented.

3.1.1.1 Beam Vibration

The first system to be analyzed will be a simple beam. Structures such

as automobile frames and columns in buildings can be analyzed as beam struc-

tvires. In the pure bending analysis of a long-slender beam, plane sections

are assumed to remain plane, shear deformation and rotary inertia are neglected

and th. deformations are small. Many engineering structures meet these assump-

tions. These assumptions also lead to equations which are fairly easy to solve

and, at the same time, give very good insight into the dynamic behavior of the

structure.

Consider an element of a deformed beam as shown in Figure 3.8 where

Ax is the length of the neutral axis. At a distance z above the neutral axis,

the length of the element is Ax'. Therefore

Ax Ax'
= =R-z

(3.5)

Ax' =R- Ax
R

On rearranging equation 3.5

Ax'-Ax z (3.6)
Ax R

By definition, the strain is given by
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R A

-o-

LA.
x

z ., -%,X) dlx)

, 1 Mx//f'J J''" w (x~t \ M x + dMx

M X W N \ V

Figure 3.8. - Element -f a deformed beam.,

Ax' -Ax
x Ax (3.7)

Therefore, from equations 3.6 and 3.7,

F- A (3.8)

Using Hooke's law,

a
__ (3.9)

xE

And on substituting for e , the normal stress becomes
X

a -EA (3.10)
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Consider, now, the forces acting on an element of the beam. It can be shown

from analytical geometry that

S2 2w3dx 2  (3.11)

+ (1: (dw23I

where w is the displacement of the beam from the neutral axis. Since small

deformations are assumed,

dw) <<1 (3.12)

and equation 3.11 can be approximated by

I d 2  • (3.13)
R dx 2

The moment acting on the section, of cross sectional area A, is

H = - fOxZdAX JCx
(3.14)

Rz dA .JfzdA r
1

Substituting for

M =- E d w (3.i5)
x dx 2

Summing forces in the vertical direction and moments about the right hand side,

dV + P(x)dx = 0 (3.16)

2dM - V d(x) + 1/2 P(x) (dx) = 0 (:.17)
x
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777 7-

where P(x), the sum of the inertia forces and the external loads, is given by

2

P(x) d-w + p(xt) (3.18)
=g dt

2

In the above equation, p(x,t) is the pressure acting on the elemental beam,

g is the acceleration due to gravity, and p is the mass per unit length given by

V = p bh (3.19)

where P is the density, b is the width and h is the thickness of the beam.

Equation 3.16 becomes

dV - P(x) (3.20)

dx

On differentiating with respect to x, and ignoring second order terms, equa-

tion 3.17 yields the relationship

d V d 'M x( . 1

dx

On using this relationship together with those in equation 3.15, 3.18 and 3.20,

the following equation of motion is obtained

El d-w + R d-w = p(x,t) (3.22)
dx 4  g dt

2

It is common practice to first obtain a solution to the free vibration

problem with

p(x,t) = 0 (3.23)

The displacement w is a function of the variables x and t. On assuming

a separation of variables of the form

w = w(x)ei~t (3.24)
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The equation of motion becomes

4
d kw = 0 (3.25)
dx

4

where 2

k 4 =- (3.26)EIg

The solution to equation 3.25 is of the form

w = w 0qt (3.27)

which ieade to the following equation for the roots

4 0q -k = 0

or (3.28)

q k, ±ik

The general solution may be written as

w = C1 Sin kx + C2 Cos kx + C3 Cosh kx + C4 Sinh kx (3.29)

Four boundary conditions are required to evaluate the four constants in the

above equation. These are obtained f- . the following

dw
Clamped: w = dx 0 (3.30)

Simply Supported: w dw = 0 (3.31)
dx

2

d2 d3w
Free: . . = 0 (3.32)

dx 2  dx 3
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-For a simply supported beam, the boundary conditions lead to the following

equation for the eigenvalues

[ Sin kL 0 (3.33)

from which

kL = , 27, 37r, ... (3.34)

or, for the mth mode;

k MIT 1r 2, 3 .... '(3.35)

From equation 3.26 the natural circular frequency w is given by

(3.36)

m= ()2

and the natural frequency fn by

[1 222f M 1 (3.37)

The simply supported beam mode shape, for the uth mode, is

w(x) wSin --- (3.38)
a a L

For a cantilever beam the boundary conditions lead to t.-e cigenvalue

equation
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Cos kLCoshkL=-1 (3.39)

The general expression for the natural frequency of a beam, including the

canteliver beam, is

2

f L (3.40)

where

X=k L (3.41)U U

The roots of equation 3.39 are listed in Table 3.2 for the first eight modes,

of the cantilever beam. The corresponding cantilever beam mode shape is

TABLE 3.2. ROOTS OF CANTILEVER BEAM

kL (kL) 2
k1L 1.8751041 3.5160153

kIL 4.6940911 22.034492

k3L 7.8547574 61.697214

j : L 10.995541 120.901924

k-L 14.137168 199.85953
31

k 6L 17.278760 298.55553

kLX 20.520352 416. 99079
I

k8L 23.561945 555.16525
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.Cos Sin kL - linh kL (Sin k( Sinh kx (3.42)W Cos kL Cosh kL

On assuming harmonic motion, and harmonic excitation of the form

p(x,t) =px)e

equation 3.22 becomes

#dv -u 2
E + --" =PX) (3.43)

dx g

which is the Euler-Bernoulli equation of motion for a vibrating beam.

3.1.1.2 Beam Vibration with One-Sided Coating

if the beam is made of a material whost modulus is complex. then

E = E'(l+ir-) (3.")

where - is the ratio of the imaginary to the real part of the modulus, given

by

E (3.45)

The parameter - is the material dapina or the loss factor. On substituting

the compiex modulus into the Euler-Bernoulli equation (equation 3.43), it

becomes

d - w = p(x) (3.46)

dx-
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Now consider a bes that is coated on one side with a layer of

viscoelastic material as illustrated in Figure 3.9. An infinitesimal element

177777N.A.J_

Figure 3.9- - Beam coated with viscoelastic material.

in the deformed coating is illustrated in Figure 3.10. A fiber in coating,

-N.A

/

Figure 3.10. - Infinitesimal element of deformed coating.

at a distance, z. from the neutral axis, has a thickness, dz, and an

undeformed length, dx. During deformation, this fiber elongates by a distance.

Ax. Therefore, the strain is

Ax d2

Ax  -z d (3-47)
x dx jx2

Following equations 3.1. 3.2 and 3.45, the energy dissipated per cycle in the

length of the fiber is

ZD = -br" (c ) dx dz (3-48)

where

nDE Dz (3-49)
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Th total energy dissipated in the viscoelastic coating over one cycle is

(r+s) h 1
Dd= f dz L (d-2) dx (3.50)

frhx

Alternatively,

d DD I dx (3.51)

where ID is the second moment of area about the coated beam neutral axis

given by

if = b z dz (3.52)

The maximum strain energy stored in a beam is

s2 2Us =2 ( dx 2) dx (3.53)

'length

Therefore, the maximum strain energy stored in the coated beam is

UsL E I 21 C' 2-34
2d 2j dx 2 - EDID dx
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Since only the viscoelastic coating is assumed to provide the damping in the

;eam, then

Ds = Dd  (3.55)

in equation 3.1 and the system loss factor ns given by equation 3.1 becomes

E"I w dx

00

ns = (3.56)

for a uniform thickness beam with a uniform thickness coating. This equation

reduc.s to

nDEDID(3.57)
as ff E2 12 + EDID

Making" the same assumptions as for the Euler-Bernoulli beam (plane sections

remain plane, neglecting rotating inertia and assuming small deformations),

and usjing the derivation for the single material, it can be shown that

(E 212fd + EDID1 2

(E1 dID)---Z- g ('2 + iiD ) w2w = p(x) (3.58)

dx d

where 2 and uf D are the beam and the viscoelastic coating mass per unit

lengths, respectively. On assuming that only ED is complex, equation 3.58

becomes

S E 24 D

(E I + - DD dw 1 2

22 + EDD 1 2 +ED IDI dx 4  2  D) w w p(x) (3.59)
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This equation is the same as Equation 3.25 if

El = E2J. +EI = Ecl (3.60)
2 2 D D cc

and n = n~ given by equatin 3.57. Zh ratio of the damped beam loss factor

to the loss factor of the viscoela" "i datiping material is

ns  E D ID

E 2Z2 
+ EDID (3.61)

The resonant circular frequencies w cm and w2m for the ath mode of the coated

and uncoated bearn respectively, are related by

c1 L4i 1 g w2 t./2g (3.62)
C'cm c 22u..2g

where X is the eigenvalue for the mth mode and is a constant. The value of
M

X is determined by the mode and boundary conditions of the beam. From equa-
U
tions 3.60 and 3.62, the ratio of the damped.beam to the undamped beam natural

circular frequencies for the nth mode is given by

(=c, 2  Ecc =2

(3.63)

cm = D+ .
f2m 112 E212

where f and fl, are respective natural frequencies in Hz. In the above

equations
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h D 2 ED 3  hD h D ED 3

2 h2 h 2  2h24[ .... (3.64)

h2  E2

and

After some'algebraic mnipulation, equation 3.61 becomes

2h D A J 3.66)

1 (

hhi

L) 2 2 2

where

-2+3 h0  2 2 (3.67)

2 2~ 2 + 23 (:--) + D Dh2

On using the simplified notation,

EDh

Er - andh (3.68)

r E2 r h2
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then

(+ E h r  (1 4 9f-rh r + E2b 2
r1rEr r (3.69)

Q[r+E 3 2 h 4 _113D rrhr rT2 + 2Er + Ernr

where Q is the ratio of the displacement at resonance to the static displace-

ment (the amplification factor).

The model damping that can be introduced into the beam is a function of

the thickness ratio, h modulus ratio, E , and material loss factor n2 .

Consider the plot of 2A for various thickness ratios h and damping
'n D r

material modulus ratios E on an aluminum beam, shown in Figure 3.11.r

EDAMPING.LAYER h13

0.0 -

0.000: 0 - .10 wi,.

Figure 3.11. - Material loss factor ratio as a function of the modulus
ratio and the thickness ratio.
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The stiffer and thicker the damping material, the higher the modal damping.
- The modal damping cannot exceed the loss factor of the damping material. That

is. as

Eh 4r r

then "3.70)

ns ID

Therefore, in order to damp a beam-like structure, it is necessary to decide

what modal damping is required and then determine from a plot, similar to the

previous one. the thickness of the damping material necessary to achieve the

desired damping. This approach does not provide any control over the weight

penalty required to achieve the desired dampitg. The other approach is to

determine the a;..ceptable weight penalty, and the modal damping that can be

obtained from a material of a given loss factor and Young's modulus.

3.1.1.3 Beam Vibration with Both Sides Coated

For a beam coated on both sides, the equations predicting the modal damp-

ing, ns , and resonant frequencies become much less cumbersome because of

symmetry. In this instance

2 bh3 (3.71)12 12

i - 2by 1/12 + N(h 2 + h)
2 /4 (3.72)

and

2!. TE D-. jE r(3.73)
D + E2 + 1
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-Where

(h/,3 + _(I,2
y- 8 (h~/h2 ) + 12 (hD/h 2 ) :+ 6 (h/h 2 ) "(3.74)

or

(1+ E - I+ =-

em - (3.75)
- no

Again it can be seen that the stiffer and thicker the damping material-, the

higher the damping that can be introduced into the composite beam. This

result reemphasizes the basic conclusion that in designing free-layer damping

treatments the designer needs to consider damping materials with high Young's

modulus-and high loss factor.

3.1.2 Partial Coverage of Beans [3.4]

Consider the beam illustrated in Figure 3.12. The beam is divided into

three sections of which the center section is coated with a damping material.

Figure 3.12. - Beam partially covered with viscoelastic material.

By definition,

- The energy dissipated per cycle by the daming treatment
2 The maximum strain energy stored in the beam and coating during the cycle
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oo Oin equAtion 3.51, the total energy dissipated in the viscoelastic

coati g is

D d (3.76)

The maximm strain energy stored in the beam under consideration (equa-

tion 3.53) is the sum " ' "e strain energies stored in the individual portion

of the beam, which is

d 2w 1 2 8 d2 2 ,,, L d 2 w3 2

s 91( ; (-y2) U I I1 dx+~f~~- dx +jfE1 3 (I dx (1.77)
o dx a dx t 33 dz

where

El - (ZT' D + E2 2 ) (3.78)

and ID and 12 are the moments of inertia for the damping material and the

beam, respectivs-ly, about the combined beam neutral axis, the same as in

equation 3.60, but with suffix I now replaced by suffix 2.

For sake of simplicity and illustrative purposes, it is assumed that

1212 ' EII - E3 3  (3.79)

Then

d d2 w 2

E"DDf j -2 ) dx
a dx" - (3.80)

s C d2 w 2 Bd 2 w 2 Ld 2 w 2 Bd 2 w 2

dx~ (-f d~fdx]- E la(-~) dx
I (---) dx~f d2~b dx a dx dx D g dx
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_A-gain, for illustrative purposes, it is assumed that the damping

treatment does not change the normal modes of vibration of the beam. Then,

2 2 +) dr- d(3.81)

0d adx Ct d o dx

a-d

nDYD
'n. (3.82)

E 1 0 dxO + EI~
11 8 d 2 -2  +DID

Q ( ;) dx

which shows that as the coverage approaches complete coverage,

-+ E 1 + D (3.83)

the same as equation 3.57 for a beam with complete coverage. The integral,

for each section of the beam denoted by i,

fd -1 2 .
f ) dx(3.84)

leng~h ( )
section i

can be determined in a number of ways. If the normal modes are %nown, that is

wm Mo (L! (3.85)

then d2/dx2 and the integrals can be readily determined. The function

*, (xi/Li) is dependent on the boundary conditions and loading. If
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EId - W W(x) p(x) (3.86)

then a solution to the-above equation can be-obtained of the form given by
equation 3.29. Whichever solution method is used, either the direct or the

normal mode method, expressions for w(x) are obtained. The resonant frequency
can be determined along with the moment distribution d 2w/dx 2

3.1.3 Vibration of Unstiffened Plates with a Free Ia-1er Damping Treatet 13,.13]

The equation of notion of a srple plate is

DV4 - k-Ow p(x, Y) (3.87)

where

2 2y2 4
ax ay

E 3
D Eh (3.89)

12(1-v 2 )

and

h - thickness of the plate

P - density of the plate

V - Poisson's ratio of the plate material.
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Consider nov the completely covered plate illustrated in Figure 3.13.

Figure 3.13. - Viscoelastic layer on a plate.

In mach the saee way as for a coated beaa, the Euler-Bernoulli equation for

the composite plate can be written in the form:

Dc Vv '(o DVD wv a p(x,y) (3.90)

where OD and hD are the density and thickness of the damping layer,

respectively, and

Dc - D +D D  (3.91)

where D, and DD are the flexural rigidities of the aetal plate and the daping

layer, respectively, about the coated plate neutral axis. In deriving equa-

tion 3.90, it is also assme that the plate is undergoing harmonic excitation

of the form

w(x~y~t) - w(x,y) e i  . (3.92)

Using the fact that

ft dz" - f dz" 0,Og (3.93)

that is the net force in the x and y directions mist be zero in the absence
9f body forces, it can be ahovn

r - (1-s e)/2 (1-se) (3.94)
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where

h--aD ] (3.95)

The flexural rigidities are then

rh

D2  f [E/(_-v2)1z 2 dz E NhA'/[24(l-v2)] (3.96)

(r+s)h
D D " h ED(t+i r D)/(1-v 2 )1z2dz " ED) h 3 B (14-1 rV/[24(1-v 2) (3.97)

wvere it is assumed zD - zi and
"-1 (t- s2e)3 + ( +2,~2e)3 I (1+se)-3 (.8

B'- 1(2s+l+s e) 3 - (1-se) 3(j+se)3 (3.99)

Also, oa noting that

D - D1 (1 + in> (3.100)

for the damped plate, it can be shown that

-s %$ (+AB'e)- I  (3.101)

1- + (A' - 2 + 'e)/2(3.102)
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thHere f is the resonant frequency of the undamped plate for the an mode and
thf is the resonant frequency of the coated (damped) plate for the an mode.

The natural frequency, fn, is determined by solving the equation of

motion for the free vibrations of the undamped plate, given by

DV4v - R h wo2  0 (3.103)g

and is dependent on the boundary conditions.

3.1.4 S

The analyses and equations were derived in a general manner without

referring to any specific examles. For solutions of specific examples (such

as stiffened plates) there are a nuaber of references listed vhere solutions

of various examples of layered damping treatments are discussed and

illustrated [3.14, 3.15, 3.161.

3.2 CANSTIAINED-&T DAMPING TREATHE S

Constrained-layer damping treatments are among the most efficient ways

of introducing damping into a structure. There are many variations of

constrained-layer treatments including damping tapes, sandwich plates,

multiple-layer treatments; and a multitude of special configurations including

the use of corrugations, spacers, selected cuts, and schemes for alternately

anchored constraining layers.

3.2.1 Sintle Constrained Layer

To understand the concepts involved in constrained-layer treatments, let

us consider one of the simplest and most failiar forms of these treatments,

the single constrained layer consisting of a thin layer of damping material

combined with a constraining layer of metallic foil. Such a treatment is

shown schematically in Figure 3.14 with the typical dimensions grossly out of

scale for Illustrative purposes. The damping mehanism, in this configuration.

is the cyclic shear deformation of the damping layer, as Illustrated in

Figure 3.14.
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Figure 3.14. -Single constrained layer illustrating shear
deformations of the damping layer.

In analyzing constrained-layer treatments it is usually appropriate to

neglect bending deformations (elongation and compression, which in contrast

are the most important in free-layer treatments), and to assume that all

deformation in the damping material is shear. With this in mind, consider

the shear deformation vereion of Equation 3.4.

D a otf11tC a 2 av (3.83)

Vol

where G is the shear modulus, Y is the shear strain and Tj is the loss factor.

Unlike the case of free layer damping. the level of cyclic strains in the

damping material of a constrained-layer treatment is greatly affected by the

geometry of the treatment and the relative stiffness of the damping material,

constrainir layer, and base structure. Often, a decrease in the shear loss

modulus, rjG, of the damping material, will increase both the strain, y, and

the energy dissipated, D , since D is proportional to the square of the strain
S s

and only to the first powr of the shear loss modulus. It must be kept in

mind, that for any given geometric configuration, there is shear modulus which

will optimize D and if the modulus is increased or decreased from this
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optimum point, D will de'tease. The area shown in Figure 3.15 illustrates the
s

temperature range in wnich most shear damping materials are efficient.

The symbols used in equation 3.104 and all other equations in Section 3.2

are listed in Table 3.3.

The design of an optimized constrained-layer damping treatment is much

more involved than the simple chore of picking a materir1 with the highest

possible loss modulus for a free layer treatment. For instance, it has been

shown [3.17] that a constrained-layer treatment has an inherent frequency, or

more precisely, a wave length dependency not present in the free-layer treat-

ments. Fignice 3.16 illustrates how this wave length dependency can affect the

shear deformation in damping treatments with different lengths of constraining

layers. In long treatments with long bending wave lengths, the center portion

of the damping layer does not experience high shear deformation, due to the

stretching of the constraining layer. On the other hand, in verty short

Gany Rion Tramndton Region Rubbery Reion

c.

0

-ED - 'X 1II
TemperIture

Figure 3.15. O ptimuma temperature range for constrained layer treatments.
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TABLE 3.3. - LIST OF SYMBOLS FOR SECTION 3.2

SYMBOL DEFINITION

A Cross-sectional area

A3  Beam area

a Plate length

b Plate width

D Energy dissipated in structure or systems

E Young's modulus

F i  Net extensional force on the it layer

F Tension in the beam'.3

G Shear modules

-Dimensionless shear parameter (equation 3.142)
*

G2 Damping material complex shear modulus

G2 Shear modulus of the elastic foundation

go Exponent in expression for logitudinal displacement
(equation 3.111)

H Distance from the center of the i h layer to the reference
Hi neutral plane of the laminate

H Thickness of material

I Moment of inertia

Ki Extensional stiffeners of layer i

k Wave number
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TABLE 3.3. - LIST OF SYMBOLS FO SEC', (44 3.2 (Continued)

SYMBOL DEFINITIeN

L Bern length

1 Optlmi length of constraining layer

Hii Moment exerted by the forces on the i t h layer about its own
neutral plane

Si Cross-sectional area of layer i

1Loss factor

rDampiug material loss factor

y Shear strain

U Mass density per unit area of composite plate

v Poisson's ratio of composite plate

*Beam slope (flexural angle)

* Shear strain

T Shear stress in the elastic foundation

Ti Extensional stress

Beam longitudinal displacement

Density
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Figure3.16. ae lthiIi deednyo hear deformation.~

treatments, the maximum shear deformation at the ends of the segments can be

quite small. These factors, therefore, suggest that, for a given viscoelastic
material, constraining layer, frequency range, and temperat'ire there is an
optimum length of constraining layer. The length has been calculated by
Plunkett and Lee [3.18] to be

k -3.28 HRH (3.105)

2

where It and H 3are the thicknesses of the damping material and the consgtrain-
ing layer respectively, E3is the Young's modulus of the constraining layer and

IG *2 is the absolute value of the damping material complex shear modulus. This
analysis is valid for cases in which the half wave length (or approximately the
distance between node lines in the structure) is much greater than the optimum
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length Y.. Actually, this analysis illustrates the importance of considering

wave length effects in the design of constrained-layer damping treatments,

since if the thicknesses and stiffnesses of the damping treatments were chosen

so as to have P nearly equal to the half wave length in the structure, then

no cuts would be necessary in the constraining layer for optimum damping.

As shown in Figure 3.17 maximtu energy dissipation is achieved with shear

stresses approaching the fatigue strength of the visccclastic matetall. For

instance, it has been demonstrated (3.19] that some viscoelastic materials can

102 -K

1

CICL 1

C"a. 1°'1 -to
.%Band for variety of

Structurat Materials

~(Not high damnping)
10 - 3

0 05 0.1 0.2 0.5 1.0 2.0

Ratio of Rev-trsecd Stress to Fatigue Strength

Figure 3.17. - Yt.ximum energy dissipation when shear stresses
approach the fatigue strength of the
viscoelastic material.
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Rof

withstand millions of reversed cycles of strain as large as unity without

evidence of fatigue failure. It is apparent therefore, that if a full damp-

ing potential is to be realized from one of these adhesives, then ideally it

should be strained to much higher levels than the structural materials with

which it is used. Most practical applications of constrained-layer damping

treatments are limited in effectiveness because of the small strains obtain-

able in the viscoelastic layer. This is particularly true on thin metal panels

where the plane of the damping layer is displaced only slightly from the

neutral bending axis.

Ojie of the factors limiting the strain achieved in the viscoelastic layer

is the stretch in the constraining layer. It is important to note, however,

that the temperature at which maximum damping is achieved, will decrease with

increasing constraining-layer stiffness if the viscoelastic layer remains the

same. There is also a practical limit to the stiffness of the constraining

layer, for when the constraining layer becomes stiffer than the original

panel, the shear deformations in the viscoelastic material are limited by

stretch in the original structure. Therefore, the symmetric sandwich panel,

shown in Figure 3.18 is one of the most efficient single constrained layer

configuretions for damping of sheet metal panels. Unfortunately, sandwich

panels usually have to be designed into the original structure because they

are difficult if not impossible to add to a structure after it is fabricated.

MTALLIC

MATERIAL

Figure 3.18. - Symmetric sandwich panel.
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3.2.1.1 Special Configurations

Several umique configurations have been investigated as a means of

increasing the shear deformations in constrained-layer damping treatments. A

spacer, which increases the distance between the neutral axis and the damping

lzyer, as shown in Figure 3.19a, can greatly increase the effectiveness of

layer treatments provided that the spacer is sufficiently stiff in shear [3.201.

The problem ii that lightweight, low-cost materials usually considered for

spacers have a relatively low shear modulus. Shear deformations, therefore,

occur in the spacer, as shown in Figure 3.19b, which detract from the theo-

retical advantage gained with the spacer assumed rigid in shear [3.21].

I~~~ ~ T -' '.lI!!]I
STRUCTURE

(a) UNSTRAINED CASE

EXTENSOI WITH A SPACER INFINITELY STIFF IN SHEAR

DAMPI NG M AT ER IA L

• SrRL "TURE

(b) STRAINED CASE

Figure 3.19. - Spacer used with damping layer.
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To circumvent this problem, Torvik and Lazan [3.221 investigated a

corrugated configuration as shown in Figure 3-20. Damping material was

applied between bands attached to the beam or panel, over a filler material.

The bands were thin, but constructed of material with a high Young's modulus

so that they could withstand compressive as well as tensile loads. The filler

material did not need to be stiff in either bending or shear to ensure

negligible deformations normal to the beam. Analysis and experiments demon-

strated increased panel damping by a factor of 20 over the untreated panel,

compared with a 1 percent improvement resulting from the same viscoelastic

matter applied to the panel. This treatment has not been used due to the dif-

ficulty in fabrication, but the investigation did serve as a basis for further

developments.

Later, Lazan [3.22, 3.23, 3.243 developed a multiple-layer, alternately

anchored treatment which was easier to fabricate but still showed increased

effectiveness over conventional multilayer treatments. Figure 3.21 shows a

schematic of this concept which used rigid connections between alernate con-

straining layers and the structure to increase the shear deformation in the

outer damping layer. Another configuration for increasing strain in the damp-

ing layers was proposed by Plunkett and Lee (3.18]. Figure 3.22 is a ichematic

showing how the constraining layers were cut to optimal lengths to increase

so A .:X:
)z

Met W r .. ....

Figure 3.20. -Viscoelastic corrugated configuration.
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STRUCTURE

Figure 3.21. - Multilayer anchored treatment.

Figure 3.22. - Multilayer spaced treatment.

the strain in the damping layers. These optimal lengths were calculated for

stiffness properties of the constraining layer and the shear modulus of the

damping material.

3.2.1.2 Multiple Constrained Layers

Multiple layers of damping systems are frequently used to increase damp-

ing of structures. The deformation that occurs in multiple layer treatments

is illustrated in Figure 3.23, which shows a decrea.Lng shear strain in each

subsequent layer from the structure surface outward. In fact, if the same

material is used in each layer, most of the damping in a multiple

- str ined-laver treatment occurs as a result of shear of the viscoelastic

layer closest to the structure. The additional layers contribute primarily to
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Figure 3.23. - Deformations in multiple layers of damping tape.

the apparent stiffness of the first constraining layer. Typical measur d damp-

ing of a beam with I to 7 layers of damping tape is shownas a function of

temperature in Figure 3.24. As would be expected, there is a diminishing gain

from each successive additional layer and a shift of the damping peak to lover

temperatures. One of the main advantages of using multiple layers is that this

type of treatment often conforms better to an existing structure than a single

damping layer with a very stiff thick constraining layer.

As in the case of free-layer treatments, damping materials with different

transition temperatures can be combined in a multiple constrained-layer treat-

ment to achieve an effective temperature range broader than possible with a

single material. This is illustrated in Figure 3.25 [3.251, which shows the

results of damping tests of three beams with different multpie constrained

layer treatments. The beam with three constrained layers of Adhesive I show a
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-50 0 100 250
T *F

Figure 3.24. - Beam damping with multiple layers of tape.

damping peak at a temperature slightly below I0°F for each of the first

three modes of a clamped-clamped beam.

Analytical predictions of the damping (the curves) can be compared with

experimental data (the points). A damping treatment with the same geometry

but using a different viscoelastic material (Adhesive II), on a similar beam,

produced a damping peak at O°F. When the two damping treatments were combined

into a six layer treatment with the higher temperature treatment closest to

the beam, a broad temperature damping curve was obtained which approximates

.;.e superposition of the damping of the two different treatments. It is

Important to note that the high-temperature treatment must be closest to the
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beam to obtain this broad temperature performance. Otherwise, at high

temperatures the lower temperature material is so soft that the higher temp-

erature material is never deformed efficiently.

3.2.1.3 Optimization of Constrained Layer Treatments

Design of an optimm constrained layer damping treatment involves exam-

ining the tradeoffs of varying damping materials, thicknesses, and constraining

layers, allowing for the effects of temperature, frequency, and wave lengths.

In the examples that have just been discussed, all but one or two of the design

parameters have been fixed and the effect of changing these variables has

been shown. While this gives insight to the behavior of constrained layer

damping treatments, it does not in itself constitute an effective design

procedure. Analytical approaches have been formulated to assist in the design

of this ultiparameter optimization problem, and are presented in another

section.

3.2.2 Single Constrained-Layer Damping Treatment Analysir

The term "sin-le constrained-layer damping treatment" signifies a single

layer of viscoelasric material (VEM) between two elastic layers (Figure 3.26).

V|SCOEASIC

Figure 3.26. - Single constrained layer damping treatment.
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Wnen a foil is used as one of the elastic layers and added to an existing

structure with self-adhesive VEM, it is commonly referred to as "damping

tape." Damping tape dates to the early 19 30s and it was claimed that the

vibrational energy of the treated panel was reduced "substantially to zero so

as tc minimize the noise below auditory levels ... '. [3.261

Damping tape is used extensively in commercial airlines to contrnl noise

due to ttxbulent boundary layer a% cruise conditions.

When the elastic layers are approximately equal In thickness, the system

is typically referred to as a "sandwich" or a "damped laminate." This form is

finding increasing use, especially in the consumer goods industry, particularly

in Europe. In the United States, valve covers and oil pans of diesel engines

have been made of this type of construction.

3.2.2.1 Stretching of a ream on an Elastic Foundation

It is InstLuctive. when studying coast txined layer damping, to consider

the stretching of a semi-infLite beam on an elastic foundation of finite thick-

ness (Figure 3.27). Under a tension applied to the end, the beam is stretched

and the elastic found- tion is sheared. The equilibrium of the beau segmet of

length dx gives

-:t 2 1a 2 (3.106)
H

2

and the stress relationship for a unit width beam is

F F3
3  - . E 21 (3.107)

A3 H 3 3 X

where

A3 is the area of the beam,

E3 is Young's modulus of the be-m,
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I-I

F3  ,

F3 l----I  I F3 F  dx

-4-----

HF3 is the thickness of the beam*

F, is tension in the be:am,

i s the shear stress in the VEM, (Elastic fona tiondat)

GI is the shear modulus of the VEM,

H is the thickness of the VEM,

q, is the shearing strain of the VEM, and

c is the longitudinal displacement of the beam.
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Differentiating Equation 3.86 gives

3F3  2
- E3H3  (3.108)

and substituting into'Equation 3.L06 and collecting terms yields the differen-
tial equation for

2 2
.2 C - 0 (3.109)ax 2 E33 H2

The solution for Equation 3.109 is of the form

-go x go x=cle + ce (3.110)

where

GE 32  "(3.111)

The coefficient c2 must be zero if is finite for large x. For the other
boundary condition we obtain,

(o) = - o = i (3.112)

the solution for the displacement becomes

-gox

- e - 0(3.113)

and the tension is

-gox

F3 = E3 H3goe 0 (3.114)
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TAus the tension and displacement at the end of the beam obey the relationship

F3 = E3H g (3.115)

Equations 3.113 and 3.114 show that the displacement and tension decay expo-

nentially. The parameter g governs the rate and consists of two parts, G2/H2

and E3 H The effects of changes in these parts on the displacements are con-

sistent with intuition; i.e., a softer foundation or a stiffer beam increases

the distance required for the displacements to die out.

3.2.3 Flexural Rigidity of Single Constraining-Layer Configurations

'lass (3.27] analyzed such an arrangement; both outer layers were 'Con-

siderud to be very thin, and shear effect in the core was included-. This

analysis basically follows Ross, Kerwin, and Ungar. [3.28]

On considering the forces acting on the deformed beam element in Fig-

ure 3.8, it can be shown that the inertia force is related to the bending

moment H x, in the free vibration of the beam, by the following equation

PA 3 2w PA .. 2 xg t =- -- x2 (3.116)
ga2  g ax2

In order to solve this - uation for a layered beam, it is first necessary to

express HX /ax 2 in terms of the geometry of the layered beam. Consider the

unit width element xf the layered beam in Figure 3.28, the total bending

moment may be exprv,sed by

M = El rI= + (3.117)x x ii iio

where

th
MH is the moment exert-d by the forces on the i- layer about its own

neutral plane,

F is the net extensional force on the ith layer, and

Ho is the distance from the center of the i-"- layer to the reference
neutral plane of the laminate.

3-52



C33

. .. . ..

C, -A d

Figure 3.28. - 51Igle constrainirg Iye'r dlement.

The individual moments may bf given in terms n!f I..vatures as

M E I i (3.118)

M'2 E 12 (t-.) (3.119)

143 E 13  (3.120)
33 3 3 ax

The extensional strains at the mid planes are

(C+ dx) - t-JI + dx) -(40 f,
3. I x Ir ax o ~ (3.121)

1 dx dx ax
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12in J [ + H2 0 (4 + . dx) + ' dx2 0 x %2 x

+ H "
0 20 " dx U2 3x - 2 ax (3.122)

C dx) *+2 x)
3 M o +  30 ( +2 a! 23 ax

[~+u0 s~H . L .- H iti...q t
+ 34 "* x 30 ax 2 ax (3.123)

where H _

H20 - H2 1 -

H30 H 31

H + H (3.124)

1 2H2 1  2

H31~ -

The net extensional force on each layer is the product of the extensional

strain at the midplane and the extensional stiffness, which, in turn, is the

Young's modulus times the area.
F E IH Hi

a x (3.125)

F - E2H (H0 - 2dj )  (3.126)
2 2H2 20 Ix 2 dx

F=E R (H -U -H 3* ) (3.1271
3 3H3 (H30 ax 2 ix
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The net entensiona1 force on the~ unit width elemenL is zero for pure bending

F -0 EH I H it

I11 10 ax

+x 2 E -H )  (3.128)

+ 23 H3 (H3 0 3x 12 x)

from which

rH-, [.L.~ i, ~

S2 2 21- - (3.129)

+ E3H3  [P 3 1 - ) *" -H2*'] -0

which becomes

- (E IHI + E2 2+ E3H3) A ) "

+ (E21R2H2 1 + F 31H3H3 1) ' (3.130)

2H2
(-t-= + E3H3) H 2 -0

where each prime above a symbol reprcsents partial differentiation with resnect

to x. On solving for H, the following equation is obtained

E H
EHH +EHH - (-2 2 + E 3 ) H 2
-2 2 21 3 3 31 2 3 3  2 (3.131)

EIH 1 + E2H2
+ E3H3

Equation 3.117 may be solved for the flexural rigidity and becomes, after

substitution of equations 3.118 to 3.120 and 3.124 to 3.127,
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r

M H 3

1 12 1 1EI = --: - - FHiS H(_U)

+(1 +~ +E H [(H2  2 "J1-i (3.132)
12 221 2 --- (2

3E3H3  r

+ - +E3H3 I(P - ) -R 24 (H31-

which simplifies to

EIH13  E2"23  E3 33

S-12 12 3.133)

+ ElI l 2 + E22 (H21 + E3 (31)2

The beam is assumed to be undergoing simple harmonic moticn and have a

simply supported mode shape given by

w(x) = Sin kx (3.134)

where k is the wave number given by equation 3.26. The slope is

= w-. k Cos kx (3.135)

and the second derivative of the slope is

to= -k3 Cos kx = -K . (3.135)

On assuming that all laminates undergo the same lateral displacement, the shear

strain ?i of the viscoelastic layer is proportional to the flexural angle ;.

Therefore,
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S-0 (3.137)

: - and

and *1 +" ; *" " (3.138)

Taking the partial derivative of F3 in equation 3.127 and setting it equal to

equation 2.106 gives

t 3 ,
-x - 33 P31H 2 t" -2* (3.139)

which with equation 3.136 leads to

31 2 (3.140)

or 2  
E3H 3? 2  E 3112k 2

2 $ + "G 2 1 + G (3.141)

32
where the dimensionless parameter

G2
G £3H H~ k2(3 .142)

is known as the shear parameter. From equation 3.138

a12  . H2*
,ST 2 (3.143)

Substituting equation 3.141 into 3.131 gives

E2H H31 -H
E 1+E 3H 22 1 3 1E2H21 2 t 43H3H31 --- +383) j+(3.144)

EIHI + E2fl2+ E3 3
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which, when solved for H, leads to

31-
E2 2(2 21-_-- + G( E2H2H2 . E3"3H31)

E IH+ 2H2 +-(EiH + E2H2 + E3 H3 ) A(3.145)

2

Substituting equation 3.141 into 3.133 gives the expression for the flaxural

rigidity

ElRI 3 + E2H23 E3H33

- -= +
12 12 12

+ E1 51 
2 1 - E2 1N2 (H2 1 _j)2 + E3 H3 (H3 1 _-r12  (3.146)

E 2+ 2  +)1

= -~ L2 -~ ("2 1 -H) ? 3 3(831  1~ + !a~i*

Equation 3.146 is used in calculating the modal damping. Any or all of the

quantities El, El, E2 , E39 and G2 may be treated as complex. A complex E1

would represent the baseline damping of an untreated structural member. A

c asplex E2 and G with H3 = 0 and E = 0 would approximate a free-layer (exten-

sional damping) treatment. (H3 = E3 0 is not valid because it results in

G O). A complex E would represent a viscoel.astic constraining layer. Thus,

the equation is seen to be very useful. It should be noted that there is no

shear deformation allowed in layers I or 3.

3.2.4 Single Damping Material M ultiple Layer Desi,_n

The analysis used for this investigation is based on the equations that

were just develored [3.51. The analytical approach is modified to handle

multiple-layer configurations using the same damping material in each layer.

Experiments were performed to verify the analytical results.

The flexural rigidity, El, of the threL-layer system shown in Figure 3.29

is given by
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UASE STRUCTURE 03

Figure 3.29. - Elements of a three-layer system.

E 1I3 + 2 R23 3 2o

El - + ]1 + E3  2j + EH - I + E2H2(H21 _)2+ E 313(H31_H)

r 2 
+ 

H22 1.:E2 (H21 -H) + E3 H3 (H3 1 - 3 ) _ (3.147)-12i 2 21333 +16

where

-- 2H2(H21-- +iff(E222 + E33 1- 2 - (2 2 H2H2 l 3H3 "3 1  (3.148)

E11 + !2 + G(EIH +E 2H2 £3 3)

R %+ +13

31i 2 2 (3.149)

B21 2 2 (3.150)

-. 2
2 (3.151)

E is the Young's modulus of elasticity,

G Is the shear modulus,

I is the moment of inertia

H is the thickness, and

k is the wave number.

G is the shear parameter

m is the mode number
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;. r thr ruth mode of vibration of a simply supported beam, the wave number,

k and the natural frequer.cV, i, are:

k ffI- (3.152)
m L

VE (3.153)

where

L is the length of the beam,

p is the density, and

A is the cross-sectional area.

Similarly, the wave number k and the -aatural circular frequency w for the
anh

mnth mode of a simply supported plate are:

kn2 ()2 + (:)2 and (3.154)

W k21-2~ (3.155)n n 12( 1 v 2 ) U

where

a is the length of the plate,

b is the width of the plate,

u is the mass density per unit area of the composite plate, and

v is the PoIsson's ratio of the composite plate.
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Introducing complex modulus terms and making certain simplifying
assumpt ions:

a. The damping of the base structure is negligible.

b.' The extensional stiffness of the damping layer is -small,

( 2<<E3 and E2<<E1

Equation 3. .47 becomes

EH= E I N3 + E3H 3 + C2 [ RE (3.156)

3 3 12
EH3 E 3 = £ 3 n 3 + 22 'i (3.157)

c + d

where

a W tEIHIE3 H3 U3 1
2  re(1-n2"3 ) + d( 2 +T3 ) + [c(1 2 +1 3 )1I (3.158)

B , E1 1E2 2 3 1  le + dn2 + '(c4 2 -dj (3. 159)

3 -2& 2H2 E3 H3 H2 1 H3 1 c(l- 2n2 113 - n22) + d (2n2 2n3

+ i[c(2q 2 + 13 "2 2 13) - d(l - 2112f3 - 2 2)1 (3.160)

c - E3I I Q+ G) + ---31H3 ( 2 3 )  (3.161)

d a UE1H2 n2 
+ !E3H 3 (12 + q3). (3.162)

The above equations can be used to predict the performance of simply supported

beams or rectangular plates with constrained layer damping treatments. For a

three-layer sandwich, which is equivalent to a single constrained-layer system

as already discussed, the equations can be used directly, and for multiple

c-nstrained treatments they can be used in a step-by-step procedure.
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For the single constrained laver, equations 3.156 through 3.162 can be

used without modifications to predict the performance of the treatment. To

use these equations, it is necessary to know the complex modulus properties

of the damping material (modulus and loss factor), which are dependent on both

temperature and frequency. It is necessary to go through the following steps.

1. First it is assamed that either the natural frequency, , or the
semiwave length of vibration is known. Regardless of which is known,
the other quantity can be calculated from equations 3. 152 and 3.153
for beams, or 3.154 and 3.155 for plates.

2. The undamped natuzal frequency can be determined (if not known) from
equation 3.153 for a beam or 3.155 for a plate.

3. The material properties should be determined for the frequency of
Step 2 and for the desired temperature range to which the structure
and damping material are subjected.

4. Using the material properties of Step 3, the term EH3 of equation 3.155
is calculated.

5. Use this value of EH3 in equation 3.153 for beams or 3.155 for plates
to calculate the frequency of the 3 layer sandwich. With the new
frequency recalculate the material properties and the EH3 term
(Steps 3 and 4). Repeat this process until the frequency converges
(within 10 percent).

6. The loss factor is calculated from equations 3.156 and 3. 157.

7. The above procedure is repeated for each desired temperature.

3.2.5 Anvsis for Multiple Cnstrained-Laver Treatment

As a result of many tests on the performance of multiple constrained

layers constructed with the same damping material in each layer, it has bee.

observed that most of the shear deformation occurs in the shear damping layer

closest to the structure. 13.29] All the outer layer pairs act as a thick

constraining layer which restrains the first shear damping layer. Therefore,

if the stiffness of all subsequent layers can be determined, then the damping

of multiple constraied layers can be predicted. This can be done by using
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the three-layer equation and working from the outside of the treatment (away

from the structure) to the first layer. The steps for carrying out this pro-

cedure are described below (also refer to Figure 3.30).

1. Repeat Steps 1 through 3 for a single layer application.

4. Consider the nth constraining layer, nth daping layer, and the ti - I
constraining layer. Calculate the term EH3 from equation 3.157, and
hence E and H.

5. Take E and H from Step 4 and use them as the new properties of a con-
straining layer acting on the N - 1 damping layer and N - 2 constrain-
ing layer.

6. Repeat Steps 4 and 5 until the first shear daping layer is reached.
At that point, the first dampin layer will have one equivalent con-
straining layer filth a given E and H.

7. Repeat Steps 4 through 7 of Section 2 for the single constraining
layer.

3.2.5.1 Multiple-Layer. Maltiple-Mzterial Constrained-Layer fDaping Analysis
[3-301

The method of using a multiple-layered constrained-layer damping design

to obtain a broad temperature range of damping was discussed early and has

been successfully applied to various problems. 13.21,3.25,3.29]

CONSTRAINING LAYER v

/// DA!I LAYER 1 N layer Pair

CONSTRAINING LAYER)
2N-I Layer Pair

L/, DAMPING lAYER

CONSTRAININGLAYER '
77777 7 171 N-2 Layer Pair

Figure 3.30. - Elements of N constrained layer system on a structure.
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Numerous methods exist to analytically model certain-types of mulliple

layer treatments 13.31-3.341. This section presents an analysis technique for

a general multilayer prediction appreach based on a generalization of the theory

ot a single constrained layer system developed by Ross, Kervin, and Ungar [3.351.

The method used in this analysis is to derive the equation of motion for the

bending of an N layered beam that is simply supported. Limiting the analysis

to this simple boundary condition permits a tremendous simplification of the

equations so that minimal computational skill is requ.ared for their evaluation.

The complex natural freqL..ncies of the damped beam are calculated, and from

there, the damping effectiveness is deteimined.

he approach is similar to that used in Section 3.2.3. The task is

-o e-1press 2 M /ax in equation 3.116 in terms of the geometry of an N layered

beam. The total bending moment M may be expressed in terms of the moments of

each layer about the composite neutral Rxis

N N
M = iMi + I Fi H ' (3.163)

Where M..i is the bending moment of the ith layer about its own centroid; F,

is the extensional force in the ith layer; and Hio is the distance between

the centroid of the ith layer and that of the composite beam. This is illus-

trated in Figure 3.31. The bending moment of the ith layer may be exsressed

as

M = x , (3.164)

wher' '. and I. are the Young's Modulus and moment of inertia.
1
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and

Ox (3.167)

Here it is assumed that the viscoelastic layers maintain a constant thick-

n:ass during bending so that all layers bend with the same curvature. The nota-

i-I
tion Z means that i takes on even values only.

J-2,2

Tie extensional stress, Ti . the product of the &train and Young's

Modulus Ei ,

Tm Ei (3.168)

The extensional force is

Fi -Si -- Si Ri a Kit i - 1, 3, 5,...,N (3.169)

where Si is the cross sectional area of layer i and K is the extensional

stiffness. Since the Young's modulus of the metal layers is much higher than

that of the viscoelastic layers it is assumed that F. is zero when i is even.

To evaluate equation 3.169 it is necessary to determine the viscoelastic

shear strain ii in equation 3.166. For small deflections of a simply supported

beam, the shear strain in each layer is proportional to the slope of the beam.

This can be seen from the geometry as shown in Figure 3.31.

- Ai ' (3.170)

The coefficient Ai. will be determined later. Differentiating equation 3.170

gives

(3.171)

3-66



Substituting the derivative of the adhesive shear strain, as obtained from

equation 3.171 into the extensional strain yi, in equation 3.166 permits the

calculation of the extensional force F1 in each elastic layer from equation 3.169.
I i- i

F i f K i [H1 W" - Hj A WI] i-3,5,7,... (3.172)
=2,2J

Also,

Fi =KI'

Substituting this equation into the bending moment equation (equation 3.163)

and then into equation 3.116 gives the equation of tvtion of the multiple

layered beam,

N N 2N -1

D ii + E Ki H io- Z Ki H E E A)

i-1,2 Li 1-1,2 1'3,2 lo 3=2,2

+ PA! 2 (3.173)

When the beam is driven by an applied loading F(x,t) the equation of motion

may be written as

D*4"'" + PIIQ- F(xt) (3.174)

where g

N N i-I

D* = (D i + K Hi 2) - KiHio H A(
1-1,2 1-3,2 J-2,2 (3.175)

D* is the composite complex bending stiffness of the N layered beam.

It will be shown later that A., (Note Ai - A ), and hence Hio take on

complex values when the viscoelastic layers are capable of dissipating energy

This causes the bending stiffness B to also be complex. The complex natural

frequcncy for the mth mode of the beam is
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*2 3 __l____

N *2 -. &D(1) (3.176)
n PA PA n

where * denotes a complex number and ls is the composite loss factor of the

damped beam.

In order to calculate the bending stiffness in equation 3.178 it is

necessary to find Hio and A • From Figure 3.31

H -H •R(3.177)
1o il

where R is the distance between the neutral axis of the composite and that of

the primary beam. If there are N layers in the composite beam there will beN-I N-I
N-- adhesive layers and there will be - values needed for A (j-2,4,6...,
2 2
n-1).

N-I
Including D, there are then-- unknowns in equation 3.179. To calculate the

N+1
bending stiffness in equation 3.175, -2- more equations must be generated in D

and A . One equation may be obtained by summing the forces in the X direction,

N
z F i - 0. (3.178)
1,2

It is assumed here that the inertia forces ,are much less than the exten-

sional restoring forces in the metal layers. From equations 3.172 and 3.176

this becomes

N N i-I
E Yi - t Ki (Hio - z HAJ w" 0 (3.179)
1,2 1,2 22J JJ2,2

N i-I
Z K1 (H -Z HA)
3.2,2.2 j j (3.180)

N

1 K
1,2
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To evaluate A it is necessary to know the relationship between the shear

strains of the adhesive layers. This may be obtained from the stress-strain

relation for the shear of each adhesive layer

1 i-I BFI -1 N
M- ::l_- £

(3.161)
ShI  J-1,2 ax Gibi J'm.+1,2 ax

Where Gi is the shear modulus of the adhesive and b is the width. Substituting

equations 3.170 and 3.172 gives

N N i-I
Aw' -K Z T H Aw."-.. (3.182)

G i b 1-i+1,2 J jzi+1,2 ia-2,2 a a

For simply supported beams,

?n 2 (3.183)

and equation 3.182 becomes
Pi 2' w I5 -N N 1-1

, "b Jii+l, Jo j-i+1,2 m2,2 m

(3.184)
i=2,4,6,... ,n-1

Substiturtng equations 3.177 and 3.180 and rearranging gives

n-i

I C -
i ^  di  i-2,4,6,...N-1 (3.185)

where

G b NGib/ N K~~ .

- + +-£+1.2 m For i J (3.186)t! 2 im-i+l,2

m-1,2
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°/ a
:-=-=-N 1mJ~. 2.

Cj r A I For J<iaJ+ 1=~ , 2 l1

z K
a-l,2 amm+12( -+,

(3.187)

Ci 4 m-Jl,2-i+l1 2 Forn >4

/ ul,2 mf

N N

N r K H.

u-I,2

Equation 3.185 is a linear systm of -j- equations wi~th Tunknowns

which may be solved for the Aj. D may then be evaluated from equation 3.180.

The composite bending stiffness and the complex natural frequencies may now be

determined from equations 3.175 and 3.76.

The dapng blty of each viscoelastic layer is included by allowing

the shear modulus t'- be complex

iG ( (, (3.189)

where njis the viscoelastic loss factor. This will cause the system of

equations (equation 3.185) to be complex and the resulting solutions, 
Aw

will be complex.

The above analysis may be used to predict the effectiveness of a general

multiple constrained-layer damper.
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3.2.6 Complex Matheatical Approach to the Three-Layer Sandwich

A review of the literature on the analysis of constrained-layer damping

system rapidly revealed that the major contributions were developed before

computers were so prevalent. Another interesting observation is that most of
the modifications in the beam theory approach regardless of thei time they were

developed have continued along the same lines. A totally non-novel idea is

interjected here for all the new comers to the area who are about to develop

computer codes for constrained-layer analysis.

The three-layer-sandwich equation is repeated here for convenience.

Therefore

E2U 1 E E3H+E 2,J~ + E3H3 (H31-W)l

12 12 12

- + H21  H3( 3 1 3 (3.190)

L 1 2 . 2

where

D =-- + 3 1 (3.191)

HR 22 - +R2(312

2

2H +R 2 (3.192)

B2 1  (3.193)
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G2  (3.194)

13HH2k2

E is -.he Young's modulus of elasticity,

G is the shear modulus,

I is the moment of inertia,

H is the thickness,

k is the wave number,

U is the shear parameter, and

n is the mode nmber.

Note that this equation is based on the assumptions that:

1) No shear can occur in layer I or 2

2) The beau is simply supported

If E, El , E2a E3 , and G2 are allowed to be complex and the coupleA

algebra routines are used that are available on most mini-computers, a

simple equation is obtained which is very powerful. This approach applies

to any of the analyses whether it is free- or constrained-layer or is single

or mltilayer. The approach eliminates the need to separate the real part from

the imaginary part analytically making t1e computer code much easier to develop.

3.3 TUNED VISCOELASTIC DAMPERS

The various layered damping treatments operate effectively oaly in

structures with plate-like bending modes of vibration, for which high surface

strains occur. For structures which have low aurface strains involving non-

platelike behavior, as in the case of very highly curved elements, or space-

frame type structures, the auxiliary mass damper (AND) concept may be of

greater utility. Although the vibration mode shapes might dictate the use of
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AND, other considerations in the total design procedure for a platelike

vibration problem sigh. also lead to an AND design as optimum.

The two types of AND's are:

1) Dynamic Absorbers - added mass-spring dampers with no damping.

2) Tuned viscoelastic dampers or daped absorber ALIAS - "Tuned Dpaper" -

added mass-spring damping with a complex spring stiffness.

The dynamie absorber, consisting essentially of a mass suspended on a

spring, has been used to eliminate sharp resonance peaks at specific fre-

quencies (revolutions per second) in rotating machinery and other devices

being excited by a single frequency. The function of a dynamic absorber is

to convert a single-resonant frequency i- cwo-system resonant frequencies,

one lower than the initial frequency and one higher.

A dynamic absorber is effective if the two new system freqtencies are

outside the frequency range of the excitation input. The typical structural

response, with a dynamic absorber attached is shown in Figure 3.32. It can

be seen that the vibration response at the old resonant frequency is eliminated.

The emphasis here will be placed on the tuned damper. Additional design

information on d:namic absorbers can be obtained from Reference [3.36].

3.3.1 Tuned DaMers (TD)

For structures excited by broadband noise, or machinery operating over a

wide frequency range, dynamic absorbers are not practical as they will intro-

duce other resonances which may be excited and, therefore, as damaging as the

original resonance. That is, eliminating a problem at one frequency may

introduce problems at other frequencies.

The use of tuned viscoelastic dampers can compensate for the problem of

introducing resonances at other frequencies. Essential prerequisites for a

tuned damper to be of value are that the damper be located at a point of high
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Figure 3.32. - Response of a single degree-of. freedom system with a
dynamic absorber.

amplitude response, such as an antinode, and that the frequency spectrum of the

response have a single resonance, a number of widely separated resonances, or

in some cases, a number of resonances in a frequency band of an octave or less.

The effects of a TI) for each of these cases is shown in Figure 3.33.

Figure 3.34 shows an idealized sketch of a tuned dmper, consisting of a

mass attached to a spring exhibiting viscoelastic damping behavior. Energy

dissipation in the damper occurs through the cyclic deformation of the visco-

elastic material. This type of damper differs from the dynamic absorber,

which functions a3 an energy transfer device at a tuned resonant

frequency 13.371. In the viscoelastic damper, mechanical energy is converted

into heat. The TD is effective over a frequency range rather than a single

frequency. TD's have been studied for many years. Classical analyses con-

sider the effect of attaching a mass to a vibrating body through an elastic
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= frequency OwD m - / is close to the frequency of the mode to be damped. The

effect of the damzper on the response of the structure is to split the original

made into two. The lover frequency branch corresponds to the damper mas M

and the structure surface moving essentially in phase with each other, while
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the higher frequency peak correspoWs to the mass and surface naving

essentially out of phase.

3.3.2 Energy Dissipation in a Sinle Daper

The essential features of tuned viscoelastic dpaer behavior can be

tnderstood by considering the energy, Ds, dissipated per cycle for given

cyclic displacement of amplitude, wo, at the point of attachuent to the

structure.

Consider the spring mass system (Figure 3.34) excited at the base of the

spring by a displacement v (t) - voe1  (or v (t) - wCos t).

The equation of motion of the system can be written as

2w Iwt_- + (w ) e 0 (3.195)
dt

2

The list of symbols used in this and ether equations in Section 3.3 are listed

in Table 3.4. Since

F (t) r ( + wr)e

then

t*

-M" ( °  w) + k (w) = 0 (3.196)

0 r

and,

- 2 w -a 2 w
r r 0
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0

Figure 3.34. -Idealized tuned damper.

or,

(MK -HvM) v fluvw7 W (3.197)

Thus.

vo ___ IV + rK N 1 u) + ir,-

2r M 2 _K , (3. 198b)
o r) +ir-x.22

the-2

~2w
Mr 0 (3.3 99a)

(K' 2)2 +..2
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TABLE 3.4. - LIST OF SYMBOLS FOR SECTION 3.3

S OL DEFINITIONK 2 Energy dissipated per cycle in tuned damper

Force in tuned damper

K' Real part of complex stiffness K*

K" Imaginary p-art of complex stiffness K*

K*. K2* Complex stiffness of tuned damper

H Mass of tuned damper

M Intermediate mass in two degree-of-freedom system

M2  Tuned damper mass in two degree-of-freedou system

p (x) Harmonic: ..im loading function

U Strain energy

W(C) Displacement of tuned damper

Wo(t) Displacement at base of tuned damper

W(x) Beam displacement as function of position x

will w2  Displacement of M1 and N

a Ratio of resonant frequenc3 tuning mass to resonant
frequency of system

$ Ratio

n Loss factor

ns  Structural loss factor

I ARatio of damper mass to mass of system to be damped

i Mass per unit length of beam

Radian frequency of harmonic motion at base of tuned damper

Natural frequency of tuned damper
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From this, resonance occurs when

K' H 2  (3.199b)

or

2 K'
w " Y" (3.200)

which is the undamped frequency.

The force tending to deform the spring or the force opposing the motion

of the base of the spring is

F - K w (3.201,'r

Also, the work done in a cycle of motion is

work/cy2e F dt (3.202)

dw
where f and jr are vectors.

integrating, it can be shown that the energy dissipated per cycle is

D = ww2K" (3.203)
9 r

On substituting for w from equation 3.219a,

D-wK" H2,aiw 2
D w W 

-. 
M j4

72 2 (3..04)(K' - Mw-) + K-
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Since K" nK'

D V1 1n n2 W 4 W02
2 (3.205a)

(K' - N 2 )2 + (lKt)2

2 K'
With wD and 5 -, and divide numerator and denominator of equa-

tion 3.205a by -i2 results in
(K')

D n"% 2 1 (.0b

q 2 + (1 - B 
3)2

By definition, the structural loss factor is

D
s (3.205c)

s 27U

It is readily apparent that the effectiveness of a TD is controlled by

1) w - the displacement of the structure where the TD is attached.

2) ns and K' - the material properties of the viscoelastic spring.

3) 55 --
-  the frequency ratio or tuning of the TD.

The fact that -a w0 explains why the tuned damper needs to be placed at

or near an antinode of the mode of vibration which is to be controlled. Obvi-

ously, if w 0 0 or the TD is placed on a node, there will be no effect on the

structural response.

3-80



The material property effects are not as straight forward for a tuned

damper design as they are for the layered damping designs. Review of equa-

tion 3.205b shows that n and K' are in the numerator and n2 is in the

denominator. Also, wD, the damped natural frequency, is dependent on K'.

To evaluate the effect of n, assume wD = w . Then Ds n, which means that the

higher the loss factor the smaller D and n, resulting in a less effective

TD at the design frequency. This point is illustrated in Figure 3.35.

Note in Figure 3.38 that there is an advantage in the TD design gained as n

is increased which is the increased effective frequency range of the TD.

The level of material damping chosen for a TD is a design parameter which will

affect the frequency range over which the TD will be effective and will affect

the total amount of energy dissipated.

The other material property of interest in a TD design is the modulus.

As can be seen from equation 3.200, the modulus is a controlling parameter

for the TD resonant frequency. Since precise tuning is important for proper

utilization of a TD, the modulus is required to be relatively constant. This

tuning effect has a profound influence on the choice of elastomer used in the

damper. If an elastomeric tuned damper were to be operated within the transi-

tion temperature range, whet the loss factor is high and the modulus changes

rapidly with temperature, then the internal heating of the damper due to

energy dissipation would cause the resonant frequency to change and the damper

to detune itself. Therefore, elastomeric materials in tuned dampers should be

used in the rubbery temperature region, as shown in Figure 3.36, where small

changes in temperature do not have a large effect on the stiffness of the

viscoelastic materials.

The final parameter which tli_ designer has control over in equation 3.205b

is B the tuning ratio . The effect of the tuning is shown in Figure 3.37.W=)

If the wD is significantly different than w one of two peaks will be reduced
more than the other as shown in Figure 3.37. Optimum system control is

obtained with 8=1.
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Figure 3.35. - Effect of loss factor on energy dissipation.

The effects of TD placement, damping material properties, and tuning have

been discussed here to emphasize basic principle. Design procedures for struc-

tures which give additional insight into TD design and function follow.

3.3.3 Two Degree-of-Freedom

Let us now investigate .he system illustrated in Figure 3.38.

An example of such a system may be an electronics package mounted to the

fuselage on some structural member of an airframe or engine, where the support

is moving and causing undesirable vibration of the package. We will show that

the spring-mass system o. M2 and K. can be designed in such a way as to control

the amplitude of HI.
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Figure 3-37. - Effect of damper tuning.

3-83



Figure 3.38. - Iwo degree-of-freedom system.

The equations of motion of this system are as follows.

Ll; + Kt - KU (W - vl) 0 (3.20)

2 2

M w2 + K2 (w2 - w 1 )  0. (3.207)

We assume w I and 2 are undergoing harmonic displacements, so

wI  W *I in at (3.208)

w 2  
= 2 *in 4*t .

The equations of motion are then

-MU 2 W +Ki 1 -K 2 (w 2 - ) 0 (3.209)

2W+ K 2  (w2 - w) 0 (3.210)

KI,,,I  + K2 W = - and (3.211)

111~ 1 -2  v1 22'
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*2
12w1 " (K - H2w2)v 2 " (3.212)

After collecting trms and solving the simultaneous linear equations, we

can show [3.36]

(2 _ ( 2 2")2 + (2a0O)2  11/2

W [(42_02)(1.02) _ 2 02A12 + (2oa8) 2 (j 4 2X)2 (3.213)

where

2 "2

ft -2I

M2

where w is the forcing frequency and '1and 2 are the undamped natural

frequencies of systems 1 and 2 by themselves.

Using the definition --22 , equation 3.213 becomes

22

Using (th d 2 )2 a 2W222.2 e 1/2,2 becomes

(a [(122)(_82)~ 2
B 2 

)2 + (n2
2 2 )2 (-02-2/)2 (3.214)
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The amping term in the above equation is independent of frequency if r,2 is

constant with frequency, which is generally a good assumption for certain

viscoelastic damping materials. That is

2
n2 a Constant.

Parameters are ratios of resonant frequency of tuning %ass to resonant

frequency of system, a, forcing frequency to resonant frequency of system,

B. mass of damper to mass of system to be damped, X, and loss factor, n.

For many applications, the mass ratio, X, and loss factor (11) are already

determined; the mass ratio, because of size, weight and space considerat 4 ons;

the loss factor, because it is uniqe to the viscoelastic material chosen for

the spring. Consider an example in which the purpose is to control the

resonant vibrations of a spring mass system of an electronics package.

Adding a properly designed tuned absorber (a spring mass system with no

damping) will eliminate the response at the resonance of the package, but

introduces two other resonances with very high response levels as illustrated

in Figure 3.39. The response amplitude levels of these resonances may also

be undesirable, especially if the excitaion is broadband. In the illustration

as to how the amplitude of these two peaks can be controlled by using a visco-

elastic spring material, it is assumed that the mass ratio, A, and tbe loss

factor of the spring material, n have already ! een chosen. For the purpose of

the illustration, assume that

A - 0.3

and that

-2
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Figure 3.39. - Response of a single degree of freedom system
with a dynamic absorber.

both reasonable values. The amplitudes of the two peaks can be controlled by

controlling the ratio of the resonant frequency of the tuning mass to the

resonant frequency of the package, a. This control is illustrated in Fig-

ure 3.39. Usually, optimum tuning for a fixed mass ratio, U, and loss factor.

-is defined as the frequency ratio, a, at which the two peaks are equal in

3.3.4 Tuned Viscoelastic Damper Attached to a Structure

Consider a mass H attached through a viscoelastic spring to a point on a

!I

structure as illustrated in Figure 3.40. Let we Ltbe the respons- of rhe

mass M relative to a point fixed in space due to a structural vibration w e

!0

at the point of attachment, where is the frequency of excitation. The

force of the spri.ng is

#a
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Figure 3.41.- Tuned damper mounted on structure.

F = K*(w-w )e iwt (3.2151
0

and the equation of motion of the spring tmass syscem is

M dw+K. (1 + in) (w-w~ = 0 (3.216)

Then

K' (l+ifl, w
0

w2 (3.217)

K'(l~ )-U
and the force in the spring (also the force transmitted back to the structure)

F02 (3.218)
K' -!i)Mt,

Again, as in the previous section, define

D2 K'(3.219)

There fore

F 0~~~(.220)
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or[
2 -

F ~(3.221)

K'W i()2 2 + 2

If F/K is plotted against u/re then plots similar to those illustrated in

Figure 3-41 are obtained.

K wo

1-0

WiWo

Figure 3.42. - Reduction in force from the addition of damping.

This figure shows that adding damping lowers the force transmitted back to the

structure at the resonant point D = 1) but gives a still significant force

transmission over a wider frequency range.

Consider now a single span beam of length L with a tuned viscoelastic damper

attached to a number of points x x, (j 1 ... j) as ir, Figure 3.42.

JI

L

xI

Figure 3.43. - Number of tuned dampers on a beam.
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Making use of equation 3.218, the force transmitted back to the structure by

the damper at point x - x, is

Fj a KO 2w(x )4(x-x )3221-c6tl>l+ ¢x_.SF] -- 1K t+i (3.222)

where

6(x-x j) is the Dirac delta function and

6%(x-x) 0 when x xj

6(x-x) I when x =x .

The Euler-Bernouli equation for the beam with harmonic loading p(x) is

then

d4 1 2 I
dix - Z v No x Z wfxc) 6 (x-x1 ) - p(x) (3.223)

dx~ ________ i-
l-+ i)

If w(.x) and p(x) are expanded as a series of normal modes ( =) as the

uL
undamped beam, that is,

ID

w(x) - w Ha) (3.224)

P(X) r 0 (A(3. 2 25)

where wm and p_ are the corresponding zmdal intensities in the --th mode.

Looking at vibrations in the vicinity of the first node only. equation (3.224)

be--ozes
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4 4 -1
EIgA Iw 1  X 4 1 *eff (d 1(3.226)

piL [14f~)

r eff(1+in)

Where

21 2* -Z f~ I(AJ)/ f 41 (dA
J~l 0

21 2
r f- r r 1(A)/ f # (I)dA

J l 0

and

xAj -it

- L L

X (I w2L4/Eg) 1 /4

S n U!

U mass/unit length of the beam

r 
KL

3

# () is the first normal mode of the beam.
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Equation 3-226 can be written in the form

EIgA Wl
I r 1 (3.227)

Pl L  x r + iz t

Where

-(f - f 2 r 2- _4 +n 2  
(r3.228

eff e e
zz 4 1 12 ( ff (3.228)

["eff of) ff 2 2
1

ef2
eff 0f

Z, ;_______________ (3.229)

tef -'efX 
4 J2 + , 2 n2

eff -*effeff

Then,

.4
W, gF (3 230)

pL Vr+ 7

A typical plot of the nondimensional response versus ( ) vhich is the
l

ratio of the forcing frequency to the undamped nitural frequency of the beam.

is as shown in Figure 3.47.
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Figure 3.44. -Nondilensional response versus frequency parameter.

Optimun d png is defined as the value seff which makes the amplitude of the

two peaks of the response the e oe. It can be shofn that

%I r f 1/2

for optimal tuning. This implies that If we determine the optimal value of

"ef Ifo a gi e I and loss factorn. we can calculate the resonant fre-Iqueney,. o I the damper and thus the dimension of the .3prIng.

j A paper by D.I.C. Jones. "Response and Damping of a Simple Beam with

Tuned Dampers." (Reference 13.411) discusses these details.

3,3.5 Multi-Span Structures

It has been previously demonstrated that tuned viscoelastic dampers can

be effective tn damping the response of simple spring mass types of structures

or single modes in simple vibrating beam structures. Another attractive

feature of tuned viscoelastic dampers is that when applied to struc.ures with

closely spaced modes, a single damper can reduce the response in se\ rai modes

as il'ustrated in Figure 3.45.
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Figure 3.45. - Effects of a tuned damper on different types
of structures.

To better describe this behavior, consider two different types of

structures, with tuned dampers attached. The first structure is a clamped-

clamped beam with a tuned damper attached at mid-span. If the damper is

optimized for the fundamental mode, there will be little effect on the other

modes, as shown in Figure 3.45 for the case of widely-separated frequencies.

The damper will not have any effect on the second mode since it is at a node

line and it will also have negligible damping effect on the third mode. This

latter can be understood from examination of the equation where loss factor,

), fer the beam with the damper attached is defined as n D /(2nW ), where

D is the total energy dissipated per cycle and U is the total strain energy

in both the damper and the beam. In the case of the clamped-clamped beam,
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the strain energy in the third mode is much greater (about 30 times) than tie

9train energy in the fundamental mode with the Rame displacement at the center

of the beam. Therefore, even If the energy dissipated per cycle remains the

same for both modes, the effect of damping in the third mode wil! be much lower.

The second type of structure to be considered Is a row of curved skin-

stringer panels typical of aircrnfr construction, with a lightweight tuned

damper iW the center of each panel. This structure is of the type character-

ized in Figure 3.46 as having closely spaced resonances. Yet, the modes in a

given octave band have very similar strain energies, U , associated with them.s

So it is possible for a single tuned-damper to be effective over an octave band

of frequencies in such a structure, as shown in Figure 3.46.

Analysis to predict the effect of tuned viscoelastic dampers on the

response of multispan structures is given in References [3.42] and [3.431.

Analysis on the effects of TDs on other structures is given in

References 13.44 to 3.52].

U S= np,,. 05 /

- N0 DAMPERS
- WITH DAM4PERS

FRJEQUEN CY (HZ)
Figure 3.46.- Effect of elnstomeric tned dampers on the response

of a cutrved skin-stringer structure.
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SECTION 4

CLASSICAL STRUCTURAL VIBRATION RESPONSE THEORIES

4.1 INTRODUCTION

The natural frequencies and mode shapes of structures are required to

predict the vibratioa amplitudes and stresses that will be encountered by

these structures when exposed to the in-service vibration environments.

The formulation and solution of the equations of motion, for the purposes

of obtaining the above information, can range from a simple calculation to

those requiring solucion by computer. These formulations are based on the

stiffness and mass properties of the structure. Resonant frequencies, which

include a contribution from the modal damping, are encountered in actual

structures, but not the natural frequencies obtained from the above analyses.

because of the relatively low damping observed in most structures, the natural

frequencies represent a very close approximation to these structural resonant

frequencies. The mode shapes are also assumed to be unaffected by the presence

of damping.

The accuracy achieved in predicting the resonant frequencies of structures

by these methods is dependent on factors such as the accuracy of the modellIng.

One of the major problem areas has been the reproduction in the analysis of

the actual edge conditions. Another problem area is the engineering tolerances

within most practical aerospace structures. These tolerances combine to

produce a scatter band of fre'uencies Csout a mean frequency for each mode.

Consequently, an accuracy of plus or minus ten percent in predicting the

resonant frequencies, based on engineering drawing dimensions, is considered

acceptable. A higher accuracy can sometimes be achieved for structures with

very regular shapes. Normally the reverse is true, especially for mre complex

structures.

Accurate knowledge of resonant frequencies may be required when attemptinj;

to detutie structures that are excited by cohstant frequency type harmonic

excitation, which may include higher harmonics of the basic excitation
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frequency. Most environments tend to be broadband random in nature which tend,

together with transient excitation, to excite many modes. The overall stress,

which generally determines if or when the structure will fail, is obtained by

taking the square root of the sum of the mean equare stresses in the individual

modes. Often, the overall stress is due to the dominant response in the funda- I
mental mode. Variations in the resonant frequency of the individual modes will

not produce as great an effect on the overall stresses in structures experien-

cing single mode or the multimode response, as that produced by variations in

the modal damping. The modal damping can vary by as much as a factor of two

or more in practice. Variations ip the level of the vibration environments also

tend to have a significant impact on the overall stresses. Consequently,

approximate methods for predicting the resonant frequencies of structures,

often based on assumed mode shapes, provide sufficient accuracy for preliminary

design purposes and, often, for final design purposes. The vibration response

can sometimes be reduced to that of a single or two degree-of-freedom lumped

mass-spring-damper systems. The development of the governing equatlons of

motion for lumpei parameter systems can be found in any standard textbook 'n

mechanical vibration [4.1. 4.2). More advanced methods can be fowuzd in

References [4.3i and j4.41.

The purpose in Section 4.2 is to briefly describe some of the basic

Methods used in the vibration, analysis of light weight aerospace structures.

Except for a change in emphasis, the discussion is taken almost ad verbatim

from the text of a similar discussion in Reference 14.51. Emphasis is pla-ed

in Section 4.3 on simplified analysis methods that are compatible with tho~e
available for designing damping treatments in Section 3. Con-iequently, methods

that can only be solved by computer will be excluded unltss nondimensional

curves or tabulation parameterb are available. 
A

4.2 CLASSIFICATICC OF VIBRATION ANALYSIS METHODS

Methods of vibration aualybib may be classified under three general

categories according to the mathematical form if the governing equa'tions

[4.3, 4.61. Thebe thee general categories are differential equ ition methods,

9
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integral equation methods, and energy methods. The disjncticn between the

three categories is logical on a mathematical basis and, hence, to some

extent on the degree of effort required to ob-:ain quantitative results. The

most salient distinction between the three categories is the manner ia which

the boundary conditions are handled. In addition, the degree of structural

complexity that may be easily included in the model (discontinuities, etc.)

is somewhat dependent upon the method. Of the three techniques. energy methods

have found the most widespread and common use as an analysis tool. Thebe energy

methods provide a means of extending the structural analysis to include the

addition of viscoelastic damping treatments to the basic structure, based on

assumptions that the mode shapes are not affected by the added treatment.

A brief discussion of differential equation methods aad integral equation methoas

is presented with a more detailed consideration given to the energy methods.

4.2.1 Differential Equation Methods

The vibration analysis of a structure requires the solution of the

governing partial differential equations describing the motion of .he system.

For the natural vibrations, the prescribed boundary conditions must Le

satisfied explicitl to obtain unique uolutions. The frequency or character-

istics equation results directly from the athematical conditious imposed by

enforcing the boundary conditions on the general solution. Using this

method, it is [not possible to obtain frequency or mode shape estimateb that

do not batisfy the bouncary conditions. The types of structures for which

solutions to the govriing equations of motion are possible are ztri 5u,,

bendiug and twistin:g of beam:, membrane-, circular pla-e2 and rectangular

plates with simply supportcd edges 14.41. The bending and torsional v:bra-

Lion of beas ave many engiap rin. apLCations. A good source of o.Ilu-

lions to Lhv 'eo-M v-bration problem, " h.. ,h ti classical and '

boundary condition , 14- contained in Reference [4.71. Similariy.. -imply

supported rectan-gular plate equaLion ha.s b-en used a- the bani- for

approximating t.he response of plate- with fixed edge condit ions 14.8i and

those with rotat.I.nailv flexible edge condition- 14.9, 4.10, A!, 4.l2].

Solutions to hV plate vibration problt.- are also dibcu-.-ed ir. R.-ference 14.13).
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4.2.2 integral Equation Methods

Integral equation methods involve the solution of governing integral

equations. An integral equation is an equation in which the function to be

determined (i.e., the solution) appears under an integral sign. The kernel of

these integral equations (4.14) include inflitence functions (Green's Functions)

that will, by usual methods of derivation, satisfy the boundary conditions of

the problem. That is, auxiliary conditions are, in a sense, already written

into the equation so that the boundary conditions are implicitly satisfied

through the use of appropriate influence functions. This method is used

extensively in solving acoustics problems but rarely in solving structural

dynamics problems.

4.2.3 Energy Methods

Energy methods are based upon the use of one or more of the energy princi-

ples of mechanics: conservation of energy, virtual work, Hamilton's principle,

Lagrange's equations, etc. Energy methods are the most practical approach for

tha -1. ti-on analysis of complex structures such as plates with edge condi-

tions 14.13, other than simply supported and both unstiffened and stiffened

shells [4.15 through 4.19]. A basic discussion of the energy methods is

presented in Reference 14.201 with applicatiot.u of these methods in Referen-

ces 14.31, [4.51 and [4.61 to name a few. Basically, energy methods make use

of one or more displacement functions selected somewhat arbitrarily to approxi-

mate the natural mode functions. If the natural modes determined by the

analysis are to satisfy the prescribed boundary conditionv- it is necessary

that the approximate or assumed displacement functions satisfy the boundary

conditions. The accuracy of the solution, however, depends upon whether or

nct the boundary conditions are satisfied.

4.2.3.1 Rayleigh Method

Rayleigh's Mrethod is based upon a principle stated by Lord Rayleigh in

his famous work Theory of Sound in 1877 14.21j. Raylefgh's principle, stated

in modern terminology, is as follows [4.41: In a natural mode of vibration of

a conservative system the frequency of the vibration is a minimum. That is,

at any instant the energy of a conservative system in free vibration is partly

I &-
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kinet:c nIt d partly pot, ntiU. with the total energy being constant and the ime

rate Of change of the total energy being zero. Denoting the kinetic energy by

T(-) and the potential energy by U(t) at an instant of time, t, the principle

a; craservation of energy is stated as

T(t) + U(t) = constant (4.1)

and the time ra- o; change of the total energy is

d (Tt) = U(t)) = 0

dt -

Both the kinetic and potential energy are proportional to the square of

the amplitude of the mode, and the displacements vary harmonically in time

with frequency .. Hence, for a linear system, the amplitude of the mode is

arbitrary when using Rayleigh's method to determine the frequency. From the

above ret i'. It it ! evident that the =aximu valuc 5f the kinetic energy and

that the maximum value of the potential energy =must e equal. Hence, an

alternate form of Equation 4.2 is

max c hm rax

Since the motion is harmonic, T K re s

ca 1ed t he =dal rass (or generalized mas) and K is called th- mca"

(or generalijad stiffness). Hence, Rayleigh's method vields the result tor

the normal mode- respons-- frequency

K f tradisec) 2

The applicat i-n of Rayveigh's metho- requires thait the frequency b%.I

mini=mu. That is, the first --ariatioa of the frequency must mini-mize

Equation 4.4 such that

-) f-u. = 0 (4.5)
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Hurty (4.4) has shewn that the requirement stated in Equation 4.5 implies that

the assumed mode function used to obtain K and M must satisfy the governing

differential equation and the natutal boundary conditions of the problem. If

the assumed mode does not satisfy these conditions completely, thpn the fre-

quency estimate is not a minimum but slightly higher than the exact result.

Rayleigh's method is extremely useful since reasonably accurate frequency

estimates can be obtained explicitly for many structural configurations. Other

more refined methods using more than a single assumed mode require extensive

computation to obtain quantitative results. Additionally, Rayleigh's method

is a very versatile and direct method in that one only needs to make a reason-

able guess at the mode and to use this result to obtain the expressions for

the kinetic and potential energy oi tile structure. Leissa (4.13) has shown

that in some cases Rayleigh's method provides frequency estimates as accurate

as the more refined Rayleigh-Ritz procedure for the vibration analysis of

rectangular thin plates.

4.2.3.2 Rayleigh-Ritz Method

This method is an extension of the Rayleigh method and is based upon the

premise that a number of assumed functions can be linearly superimposed to

provide a closer approximation of the exact natural modes than can be had using

a single function as in Rayleigh's method. This method was proposed by Ritz

(4.22) and allows not only a better approximation of the fundamental mode fre-

quency and mode shape but also allows the calculation of higher mode frequencies

and mode shapes. Uaing several approximate functions leads to the more accurate

results at the expense of increased effort in computation.

The Rayleigh-Ritz procedure assumes that N functions, i(x), that satisfy

at least the geometric boundary conditions are used to approximate the assumed

displacement function, w(x), as a series

N

w(x) = (3 ¢iX) W (4.6)

-i
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The coefficients W are determined so that the "best" approximation to the

natural modes is obtained by requiring the frequency to be stationary at the

natural frequencies, Wi , as required by the Rayleigh Principle (Equation 4.5).

By substituting the assumed deflection w(x) given by Equation 4.6 into

Equation 4.5 and differentiating the result with respect to 2ach of the coeffi-

cients, Wi , a set of N homogenous equations are obtained in the form

-- a. 0 i = ,. ,N(4.7)

These equations contain the undetermined frequency paramater, w , so that the

resulting problem is an n dimensional eigenvalue problem. The solution of

this eigenvalue problem requires a computer for N > 3 so that the tecinique is

not readily applied to problems that do not justify extensive calculation.

The Rayleigh-Ritz method can be improved [4.23] by the use of the bending

moment M(x) at any section of, for example, a beam, rather than the differential

of the deflected shape, in deriving the maximum strain energy. The bending mom-

ent is obtained by integrating the deflected shape. The deflected mode shape is

used to obtain the distributed acceleration force over the beam. The distributed

force is integrated to obtain the shear force Q(x) at any cross section. The

constanit of integration is obtained from the shear force at the boundary (x = 0).

The moment at any section is obtained by integration of the shear force where

the constant of integration is obtained by the bending moment at the boundary

(x = 0). These two integration constants are known as boundary conditions. If

these bourrary conditions are not known, then the integration process can be

repeated twice more to yield another two boundary conditions. However, this

step is usually not required. The advantage of this approach is that good

acct'racy can be achieved in the predicted natural frequencies with a fewer

number of assumed terms in the displacement function.

An alternate approach to the Rayleigh-Ritz Method is the use of Lagrange's

equations to obtain the equations of motion based upon an assumed series
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expansion of a deflection shape. The results obtained are identical. The

utility of using this approach is that the system of governing equations can

be developed and estimates made as to the effect of increasing the number of

terms in an attempt to improve accuracy. If the effect is small, then it is

possible to rationalize an assumed single mode approximation to obtain simple

design equations.

4.2.3.3 Numerical Methods

The techniques described prLviously in Section 4.2 are classified as
analytical methods since they are basically focused at obtaining explicit

closed-form quantitative results for simple structural configurations. The

analysis techniques discussed here are applicable to the analysis of complex

structure such as found in aircraft design, For such complex structure,

numerical methods must invariably be employed in order to accurately model the

structural configuration.

Numerical methods can be subdivided into two categories: numerical

solutions to differential equations and matrix methods based upon discrete-

element idealization. Numerical solutions to differential equations are some-

what restricted so that these techniques can be practically applied only to

simple structural configurations.

Matrix methods develop the complete structural theory using matrix algebra

through all stages of the analysis. The structure is first idealized into an

assembly of discrete structural elements with an assumed form of displacement

or stress distribution. The complete solution is obtained by combining these

individual approximate displacement or stress distributions in a manner which

satisfi.-, respectively, the force-equilibrium and displacement-compatibility

conditions at zhe junctions of these elements. The formulation of the analysis

in matrix algebra is convenient in that one does not have to write out the

lengthy equations and the result is in a form ideally suited for solution on

a digital compnter.
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Examples of matrix methods that are used in all space structures include

the finite element method and the transfer matrix methoA. The finite element

method is discussed separately in Section 5. The transfer matrix method is an

iterative matrix technique that can be used for structural configurations that

are idealized as one dimensional structures. Aircraft structure between two

heavy supports, such as fuselage frames, consists of a row of panels that are

transversely supported by flexible stringers. The properties of the structure

are considered constant in the direction lateral to the frames, with boundary

conditions along these frames, assumed to be either simply supported or

clamped. The stiffener spacing and the elastic characteristics in the length-

wise direction, parallel to he frames, are taken as variables. The applica-

tion of the transfer matrix mczhod to stiffened aircraft panel structures was

made possible by the discovery [4.24] that the correlation between the vibration

response of two adjacent equal size panels that are separated by-a heavy

stiffener such as a frame, is very small. The correlation between two such

panels, when divided by a light stiffener such as a stringer, is very significant.

Prentis and Leckie [4.251 present a basic description of the derivation

of the transfer matrix for simple structural configurations and the application

of the method to simple lumped parameter mechanical systems. The general anal-

ysis techniques to apply the -ransfer matrix method to structural systems is

presented in the textbook by Pestel and Leckie [4.26]. The first application

of the transfer matrix method to aircraft skin-stringer panel arrays is des-

cribed in Reference [4.27]. This work has been continued by other authors [4.28,

4.29, 4.30, 4.31, 4.32] involving the application to flat panel arrays with

uneven stiffener spacing [4.291 and curved panel arrays [4.31, 4.321. The

problem of forced response of the panel array to random excitation is dis-

cussed in Reference [4.33]. All of the above methods require solution by

computer. A simplified method for predicting the natural frequencies of a

panel array with even stringer spacing, that does not require solution by com-

puter, is given in Reference [4.34].
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4.3 SIMPLIFIED ANALYSIS METHODS

4.3.1 Forced Vibration Theory

The majority of vibration environments encountered by aerospace structures

are random in nature, although some discrete frequency environments, such as

propeller noise, do exist. Most of these random environments produce pressure

fluctuations on the surface of the stiffened panel type structures that are

usually convected along the structure. The basic theory for predicting the

response of a panel in such structure has been developed by Powell [4.35]

using the normal modes approac.h. This work is based on the linear differential

equation of motion for flat plates with small deflections

M + C + Kw = p(x, y, t) (4.8)

where each dot represents differentiation once with respect to time and where

M = Mass per unit area

C = Damping coefficient

K = Stiffness

p(x, y, t) = Surface pressure fluctuations

w = The displacement

The displacement, w, is a function of both location and time. Therefore the

displacement can be expressed 14.36] by

N
W = vWr (x, y) q r(t) (4.9)

r=1

where wr(x, y) is the rth mode shape, q r(t) is the corresponding generalized

coordinate and the smmation is taken over N modes. Considering only the rth

mode for simplicity, equation 4.8 can be written in the form

M r  + Cr -r + Kr qr= Lr(t) (4.10)
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[ where

M w2 (x, y)dA (4.11)

Cr J C w2(X, y)dA (4.12)

r rr
Kr= wrM r  (4.1i3)

Lr(t) = Ir Wr(x , y) p(x, y; t)dA (4.14)

The ter- M r , C r, Kr and L (t) are known as the generalized mass, the general-

ized damping coefficient, the generalized stiffness and the generalized force,

respectively. A is the panel surface area and w is the natural circular

frequency of the rth mode.

For random excitation, the Fourier transform of equation 4.14 is first

taken to obtain the Fourier spectrum, I r(i), of the generalized force given

by

Yri = r(x, y) p(x, Y; i-,)dA (.5

where p(x, y; i.) is the Fourier spectrum of the fluctuating pressure. The

single-sided power spectral density of the generalized force, GL(,), is

derived from the equation

i* (LO Z (i-4)
L T-i 2T (4.16)

= -11 2



where the lister:.sk denotes a complex conjugate and T is the duration of the

dat sample. Therefore,

GL(4 =/ f W(x, Y)w (' y') G(x, y; x' . y' ; w)dMA (4.17)•~ r ' p, ;wddA 4.)

where x, y and x', y' two points on the panel and G (x, y; x', y'; w) is the

simple-sided cross spectral density of the pressure betwern these points.

The power spectral density, .x, y, w) of the displacement Is obtained by

applying the same analytical ipproach to equation 4.9 but, !n this

instance, including sun-Atio,: over all N mdes. Therefore

w( (x, Y) 1 2 r
G x , ... ) 1-fWr (x ,  Y) W r C[:,  y'r Iz r I"14 A

(r--s)

G pkx, y; x, ; dxdydx'dy'

* ww r x (X, ywx w(xy )
r s 1 )

(rs) r

G (x, y; x', y ; w)dxdydx'dy'

(4.18)

where I
Zr( Mr( 2  + 2i__r 41 r )  (4.19)

and r and s represent two different modes, , is the viscous damping ratio for

the rth -ode and the asterisk denotes a complex conjugate. For the sth mode
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the subscript r is replaced by s. The first term in equation 4.19 represents

the contribution from each of the modes and the second term represents the

cortribution from the cross coupling between the modes.

On assuming that the power spectral density of the fluctuating pressures

is essei.tially constant with frequency, equation 4.18 can be reduced to

2 r  2,
47 4 r z 1W2 i rr

w (x, y) W s(x, y)

+IZ()r .2 (4.20)

r s z
(r~s) r ''

where

" is the joint acceptanceirr

jrs is the cross acceptance

G is the excitation power spectral densityP

4.3.2 Sim,.ification of the Forced "'ibration Theory

Calculation of the power spectral density of the response of a simprlf

plate with etuation 4.20 is tire consuming even when using a computer. It has

beer shown [4.35] -hat for panels with lightly damped modes, that are well

separated in frequency, the contribution from the cross terms il negligible.

This rezult has been confirmed in REference [4.37] even for modes that are

reasonably close together. Hence the nalysis can be restricted to include

o..Iy the direct contribuition from each of the modes. The calculation still

remains complex since the excitation can be from tirbulent bcundary layer

[4.371, separated flow and acoustic excitation [4.36, 4.38'. all of which

have different spatial characteristics. The panel edge conditions usuaiiy

fall somewhere between the simply supported or fixed edge conditions. These

two bounding edge conditio.ts are usually assumed in most analyses although the

analysis with fixed edges is much more complex [4.381.
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Considerable simplification car. still be achieved by rc.tricting the anal-

ysis to simply supported panels that are subjected to acoustic progressive wave

excitation parallel to the x axis of the panel. This approach appears

rather drastic but it is considerably simpler to "adjust" the structural anal-

ysis through the use of the equivalent simply supported mode shape than it is

to perform the calculation for a complex mode shape. The use of equivalent

simply supported modes shapes in the arealysis of structures with fixed edges

is not new, having previously been used in the vibration analysis of shells

[4.16;, panels [4.8, 4.9, 4.101 and of turbulent boundary layer excitation of

panels [4.361. Also, it has been possible to replace the turbulent boundary

layer excitation with an equivalent plane wave acoustic excitation as discussed

in Section 2, Volume i of the design guide.

The above approach has been adopted for the analysis of structural

response to the random fluctuating pressure envirorment in Section 3,

Volume II of the design guide. A random acoustic plane wave, p(x, t),

that is travelling parallel to the x axis of a simply supported panel, and

incident on the panel surface at an angle , can be represented by (4.36].

p(x, t) - dkCos it x Cos )+~ (4.21)
k=l k 1 (

This pressure wave is composed of a continuous spectrum of travelling waves,

denoted by the subscript k, at all wavelengths. In the above equation c is

the speed of sound in air and d and 3, are constants. On assuming well
k K

separated modes and a constant spectrt level, ,for the acoustic pressure,

the power spectral density of the response,G (x, y, w), at a Uircular frequency,

-,and a location, x, y, on the surface of the panel, is given by

2.2 N w-(x, y) V r2
G (x, y, 4) = a-b- Gp r I

S2r1 (4.22)
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where a and b are the panel length and width, respectively, and j rr is the joint

acceptance for the rth mode, given by the expression

8  1- Cos (mT) cos era cos
2 _ s 2 n odd ,4.23)

=0 n even

For a progressive acoustic wave used in acoustic fatigue Lest facilities,

6 = 0. If a fully correlated pressure field is assumed, then equation 4.23

becomes

2 16
J rr -422 m and n odd (4.24)

im n

- 0 n even

The overall or mean square displacement,, 2 ix, y), at location, x, y,on the

panel, iq obtained by integrating equation 4.21 over the entire frequency

range. Therefore,

N VN2 
2

2 (X. Y) .2 r - rr (4.25)
2.42r.;l 3;

rr

The above analysis, based on the equivalent simply supported mode shapes, has

been applied recently to stiffened fastener attached metal and composite honey-

comb panels [4.40). Good correlation was obtained between the measured and

predicted root mean square strains. This agreement was only possible because

a realistic model of the local edge deformation at the fastener line was used.

q
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SECTION 5

FINITE ELEMENT PROCEDURE IN DAMPING DESIGN

An accurate and efficient analysis is of great importance in the design

of reliable structures which include damping materials. At the conceptual

design stage, the use of experimental technique to verify candidate design is

not an option unlesq either full scale or scaled models are built. This fabri-

cation, and the subsequent testing, carn involve considerable expenditures in

both funds and time, especially if multiple tests on several trial designs need

to be performed in order to optimize the design for minimum cost and weight.

it is apparent that appropriate analysis tools can be used to great advantage

in this design process. Many trial designs can be investigated analytically,

with experimentation confined to verification of the final design.

In recent years the finite element methods have found increasing applica-

tion in the analysis of complex structures. The ability to model very general

structural configurations, supports, loading conditions and the availability

of high-speed computers are primarily the reasons for its success.

The objective of this chapter is to provide for the designer an overview

of the finite element method (FEM) and its application in the design of visco-

elastically damped structures. The presentation is divided into three basic

parts. In the first part the basic theory and the available computer software

for the finite element analysis are described. The displacement-based FEM,

modeling of damping, and methods of solving finite element equations in order

to assess the effectiveness of damping design are considered. In the second

part the integration of the FEM into the damping design process is presented.

An example problem illustrating the essential features of the design process

is also given. Some general corr~aents for discretizing layered damping designs

are given in the final section.
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5.1 T!X FINITE ELEMENT METHOD (FM1)

The finite element method is an approximate teclin.que of describing

the mechanics of a continuous structure. From a mathemacal view-point the

method is an extension of the classical Raylelgh-RiLz wcchoj ".1s., seed in the

preceding chapter. A detailed account of the FEM may be f iA in -extbooks

[5.1 - 5.31. In the following the basic equations of the mthod are given

for later discussion.

5.1.1 Formulation of Finite Element Equations

In the FEM the continuous body is discretized using a number of ficti-

tious subdomains called finite elements. Figure 5.1 depicts some commonly

used basic elements. Then within each element, e, in the displacement-based-

FEI, the displacements, Ue , at any point, x. (i=1,2,3), are expressed in terms
1eof the nodal displacements, U , as

T
a(x i te (x )ue (5.1)*

where Ne is called the matrix of shape functions; the strain, E, is given as

e . ete (5.2)

e te e
where B is the element strain displacement matrix. The stress, a , is related

to strain as

e Dee
_ E (5.3)

where De is the elasticity matrix. A list of symbols used in these and all

subsequent equations in Sectien 5 is included at the end of Section 5.4.

The finita element equations of motion are derived from the consideration

of the principle of virtual work [5.1] which can be written as

*A single underbar denotes a vector, while a double underbar denotes a matrix.

The superscript T denotes the transpose, and superpose dots denote derivatives
with respect to time, t.
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Figure 5.1. - Common element configuration in FEM modeling.
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f(-- 6ij + Pa 6u 6i)dv f 6u6 (5.4)
ijiiij Js th

where 6 is the variatio.-al operator, is the kronecker delta. Sa is the

portion of the surface of body V where external traction, t, is specified, p is

the mass density of the structural material. Substituting Equations 5.1 to

5.3 into Equation 5.4 and carrying out the integrations, the discretized

virtual work for the finite element assemblage becomes

n T n T
ee + e e eIS lea' Ku FcuMt~u~ 5 (5.5)

e-i e-I

where n is the total number of finite elemen.ts in the assembly and

fT
Je e  B dv (5.6a)
v

is the stiffness matrix,

Uc f pe Ne NC dv (5.6b)
v

is the consistent mass matrix, and

e f Ne"dA (e.6c)

is the vector of concentrated nodal forces. When the element continuity is

taken into account, equation 5.5 can be written in the form

T T T6u K U + 6 u - u1 (5.7)

where U is the vector of all independent node displacements and K and M are

assembled stiffness and wass matrices respectively and F is the assembled load

vector. Finally in view of the fact that the discrete virtual displacements,

6U, are arbitrary and independent, the final form of the finite element equa-

tions of motion, that govern the time-dependent response of a general finite

element model of a three dimensional structure, are obtained from equation 5.7

5-4



as follows;

M U+ K U F (5.8)

In the presence of energy dissipating mechani. -3 within the structure, the

finite element equations can be derived in an analogous manner leading to

U+ C a + (Ei JU) U - F (5.9)

where Cand H are respectively the viscous and hysteretic damping matrices,

and j (-l)l/2. Construction of these hatrices from known damping data is

discussed in the following.

5.1.2 Evaluation of the Damping of the Structure

Two forms of damping representations are commonly used in the finite

element analysis damping design; viscous and hysteretic. Various other forms

of damping representation have also been proposed in recent years and are

given in references 5.4 through 5.7. The methods used to arrive at a damping

model of a structure are as fullows. If the mechanism and the distribution of

damping are kncwn precisely, then by following the procedure for calculating

stiffness and inertia, consistent damping matrices can be calculated for the

element. Finite element assembly then leads to the structural damping matrix.

The damping properties seldom are known in such a detail howeve:. Instead,

damping values associated with vibration modes are generally known from experi-

mental tests and the damping matrices are calculated indirectly using mass

and stiffness characteristics of the structure. for more general cases,

where the damping mechanism vaT ies widely throughout the structure and is not

a simple function of vibration amplitude, frequency, level of excitation, etc.

damping values are known only in an average sense, such as via a correlation

of total energy dissipated per cycle and maximum stored energy in a given

element. For this class of problems the system damping is determined using

an energy ratio method described in the next section. In the following para-

graph the calculation of viscous and hysteretic damping matrices is described.
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5.1.2.1 Viscous DaMing

In the viscaus form, where the damping in the structure is assumed to be

dependent on the coordinate velocities, the damping force vector is expressed

as

S-cU (5.10)

where C is the viscous damping matrix of the structure. Various techniques
are available to derive the C matrix corresponding to given set of modal damp-

ing ratios. In the comonly used form, known as Rayleigh damping, the C matrix

is given by a linear combination of damping matrices proportional to the mass

and stiffness matrices (equations 5.7 to 5.9) by

C -A M+A (5.11)

The constants A and A are determined from the relation
0 1

A A1 wn
n _ 2 2 (5.12)

where w is the modal frequency and r, is the corresponding modal damping ratio
n

which is assumed known. If the damping properties of the structure are uniform

throughout, the same value of the constants A and A1 will apply everywhere

n the structure and the complete daiping matrix ("proportional damping") can

be formed by combination of the complete mass and stiffness atrices as indi-

cated in equation 5.11. If damping varies between different parts of the

structure (e.g., from element to element), different A and A must be deter-

mined for each elemeat using appropriate damping ratios and equation 5.12.

The frequencies to be used in these equations are the undamped frequencies of

the element. When A and AI have been defined for each element of the struc-0

ture, the damping matrix for the element is constructed using an equation

equivalent to equation 5.11 such as

Ce . AeMe + AeKe (5.13)
0= 1.0
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where the element mass and stiffness matrices are used. The damping matrix

for the complete structure is then obtained by assembling the element mnztrices.

The structure damping matrix so obtained is not proportional to any combina-

tion of structure mass and/or stiffness matrix (5.8].

In the Rayleigh Damping described above, damping can be controlled only

in any two modes. In all other modes damping ratios are as given by equation

5.12. A more general form of equation 5.11 that permits the specification of

damping ratios in more than two modes is [5 91

p-i S

C I s o E,l,...p- (5.14)

where p is the number of modes in which damping is specified and the constants

A are obtained from the p simultaneous equations

3 2p-3e )rn,..
r (-+A 1 wr +2r + ...... +A (5.15)

r

In using the above procedure, numerical difficulties may arise when the

number of modes used is large due to the rapid increase in the numerical

values of the frequency terms. A more direct and efficient procedure to

establish C is [5.71

P
C C E C (5.16)M r-I '

where C is the contribution to the structure damping matrix due to a speci-=r

fied damping ratio in the rth mode, given as

e - 2 crA W T (5.17)

e being the rth mass normalized mode shape of the undamped stiucture. Both

representations, equations 5.14 and 5.16, ;-rmit nonuniform distribution of

damping throughout the structure. In References [5.10] and [5.111 methods of

constructing viscous damping matrices from measured modal data are given. The

matrices so derived generally lead to coupled modal damping matrices and are a
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more accurate representation of the material behavior than the ones based on
stiffness and mass properties.

5.1.2.2 Hysteretic Damping

If the structural material possesses stress-strain hysteresis and is

undergoing harmonic motion, the damping force is proportional to displacement

but in phase with the velocity. In this case the finite element damping

matrix is obtained in a manner similar to the stiffness matrix. Using the

stress-strain law [5.13,5.14,5.15]

_Q - [2 + N I . (5.13a)

where D and G are respectively the material property matrices characterizing
a 1/2energy storage and dissipative behavior of the material, and j - (-I)1 , and

i (il' 022' 033' 023' 031' 0121 , and e - (ill E22- E33' 239 C31' s1 2)

The element damping matrix associated with equation 5.18a is

. e " Bed' (5.18b)
V

This damping matrix is usually combined with the element stiffness matrix to

form a complex stiffness matrix. The complex stiffness matrix for the struc-

ture is obtained in the usual assembly procedure.

In practice, the elements of the damping matrix G are obtained from those

of the elasticity matrix D through experimentally r3asured proportionality con-

stants known as the loss factors, ns and lid, associated with the dissipation

behavior in shear and dilatational modes of vibration respectively. Thus

i r (5.19a)

, ss

- ii + 2 -Yr (5.19b)

5-8

A

M.



where Xr, 1j are the Lame' parameters of the isotropic elastic material in the

elasticity matrix D.

f (%r+7r) Ar _r 0 0 0

Ar (r+2, r) Xr  0 0 0

r X (Ar+tgr) 0 0 0 (5.20a)

D- 0 0 0 r 0 0

0 0 0 0 r 0

0 0 0 0 0 r

and U A are the materal parameters of the danping matrix G;

(AV+2 t) xi .J 0 0 0

A (Ai+2ut ) A' 0 0 0
A A (A'+2av) 0 0 0 (S.20b)

0 0 0 0 0 0

0 0 0 C P1  0j

0 0 0 0 0 _

In the event the two loss factors are equal i.e., n =d

- (5.21)

and the element complex stiffness is obtained directly by scaling the elastic

stiffness matrix by the factor n.

5.1.3 Solution Methods

Once a structure is modeled using the finite element method a number of

possibilities exist for computing the dynamic behavior. The following discus-

sions are restricted to the methods for calculating natural vibration frequency.

mode shapes and damping ratios, response-time histories under arbitrary time-

dependent excitation, and response to harmonic excitation. The method chosen
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K
in the damping design analysis will depend upon the required results (which

may vary at different stages of the design process) as well as the amount of

time and expense deemed allowsble.

The methods of dynamic re-sponse analysis can be classified as

. transient response by direct integration

e frequency response by direct solution, and

* dynamic response by modal analysis methods.

A synopsis of the solution procedures is given in Figure 5.2. The direct

methods of solution employ the finite element equations (9) in the physical

coordinates, whereas the modal methods employ vibration modes of the struc-

ture as the basis. The direct methods are more general but require more com-

putational resources than their modal counterparts. The modal methods may

employ undamped normal modes or dampea complex modes as the basis for its for-

mulation depending upon the magnitude a2 distribution of damping. The t'odal

methods are of advantage in linear problems if the load frequency content

corresponds to lower frequency spectrum. These methods are discussed in the

following paragraphs.

5.1.3.1 Transient Response by Direct Integration

In this solution method the finite element equation

+ c U + K U - (t) (5.22)

represents linear algebraic equations in physical displacements. U, and second-

brder differential equations in time, are solved step--by-step in time to obtain

the response behavior under arbitrary time-dependent loads, F(t). Two methods

of time integration along with their numerical stability and accuracy are

discussed in [5.161. The time integration method is the most gen-eral of the

response analysis methods shown in Figure 5.3 and permits the specification

5-10
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-I I
of certain nonlinearities in structural stiffness and/or damping properties

[5.4,5.5,5.16], Th ethod is relative?.- expensive because it deals with a

large number )f coupled equations; one equation corresponding to each active I
physical degree of freedom in the model.

The results produced by the method are displacement, velocity, accelera-

tion, and stress versus time. These results are of little direct use to a

designer. Commonly, the analysis is made with different types, amoimt, and

distribution of damping and its effect on response amplitude is taken as a

measure of effectiveness of the damping design.

Since the hysteretic damping is not deftled for other than harmonic

motion, to treat this class of problems including any frequency dependent

damping terms, the solution is obtained using transform techniques. The

equations of motion are first transformed to frequency domain and then the

frequency dependent darping is incorporated into the transformed equations

of motion. After a solution is obtained in the frequency domain, an inverse

Fourier transform is used to returrn to time domain. With the development of

Fast Fourier Transform algorithm this procedure can be efficiently treatel

nu=erically. In recent papers [5.17.5.19J the application of this procedure

is demonstrated. No general purpose computer programs provide this capabil-

ity, however.

5.1.3.2 Frequency Response by Direct Solution

Consider the case when rh' applied forces in equation (22) are harmonic
in time; thQt is

--1 (5.23)

were IF is the peak amplitude of harmonic force, =. is the forcing frequency,

t is -he time and j = (-) 2 . In the absence of any nonlinearities, the

response to harmonic loading is also harmonic of the form

5-13
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. ej'wt  (5.24)

where -6 is a vector of nodal displacements that characterize the spatial form

of the response. The elements of 6 are in general complex owing to possible

pbase differece (due to damping) between the response quantities and the

forcing function. Substituting equations 5.23 and 5.24 into equation 5.23,

and eliminating e j Wt from side term, leads to

t,, + jw. + J., + .E -_ (.5)f
I-W (5.25)

where the matrices K, C, and H can be general frequency dependent. For a

given excitation frequency, w,, Equation 5.25i is solved directly to yield the

displacement amplitude and phase angle at every point in the finite element

model. This technique is repeated at any desired frequency to generate com-

plete frequency response info'mation.

The amplitude/phase-versus-frequency response generated by the above

method can be used to obtain system damping estimates using half-power band-

width or phase plot methods (discussed elsewhere in this design guide).

Alternately, the system damping may be computed from the knowledge of stored

and dissipated energies in the system. The system damping ratio, li' is cal-

culated as (5.18 - 5.231

?(,E + H.)I
2Ci "1 (5.26)

where U is the displacement vector and U its transposed complex conjugate

corresponding to the excitation frequency, W.. Equation 5.26 can be written

in terms of the parameters of each element of the structures as

n e e )E (2w-- + 11)E
2% -= e 1 e (5.27)

Z (SE)e

e.1 max
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where the element viscous damping, Ce, is assumed proportional to its stiffness

matrix, Ke , (equation (11) with A°  0) and

2-, = e  (5.28)

e and =

Ce and e being the viscous modal damping ratio and natural frequency, respec-

tively. The hysteretic damping is assumed proportional to stiffness matrix,

e e e(5
n K (.29)

qi , being the loss factors of the element material at the excitation frequency,

i The element stored energy is calculated as

e I e (5.30)
(SE) ma K U (.0

where fl is the vector of element nodal displacement. Equation 5.27 thus per-

mits the calculation of damping ratio of the finite element assemblage, know-

ing the element stored energy and its damping constants.

The use of above methods is recommended to correlate the results with

experimental tests. It should be noted however that the damping value given

by equation 5.28 is not modal damping unless the forced vibration shape used

in the calculation is also an eigenvector. With increasing damping coupling

between modes and/or close spacing of the modes the forced mode is contaminated

and the results diverge from a true modal value.

5.1.3.3 Dynamic Response by Normal Modal Method

The modal method presents an alternate and economical means of dynamic

response analysis. First the method yields directly the system dynamic char-

acteristics such as the frequency of natural vibrations, mode shapes, stored

energy distribution, and modal damping. Second, through the use of a trun-

cated set of modal properties, the size of the response analysis problem is

reduced significantly.
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In the following discussion, the classical normal mode method and its

utility in determining system damping and response is described.

The normal mode methods are based on the eigensolutian of the free

vibration problem

2

where damping is ignored, however the elasti. and inertia contribu-

tions of the damping treatments are taken !nto account. The aigen-

solution of equation 5.31 leads to undamped frequencies, ws' and

corresponding mode shapes, t, with the properties

T (5.32)

T 2
r

and

(5.33)

where U is the physical displacement and _ the vector of modal coor-

dinates. Substitution of equation 5.33 into the equations of motion

with viscous damping included leads to

S+ C j+ j 2.1 , - Q (t) (5.34)
MC r

where "w '24 is n=n diagonal matrix with element in rth row and
r 2

column being w , C,. is the nxn generalized damping matrix defined as=4

C. (5.35)
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The generalized damping matrix, C, is in general fully populated, and

the coefficients, C drs' re related to the modal damping ratio, Cr, as

_rr (5.36)rr 2wi 2 r

and to modal damping coupling ratio, rrs' as

Crs rs

r 2 (5.37)

The formulation of the dynamic response analysis problem in the normal

mode method thus requires (a) the eigensolution of equation 5.31; (b) the

transformation of the load vector to modal coordinates; and (c) the com-

putation ef the matrix C

B. Modal Strain Energy Method (MSE)

Methods of constructing matrix C are discussed in Section 5.2.2. In

the event the damping in the structure is distributed such that the

damping coupling given by equation 5.37 vanishes (proportional damp-

Ing) or is at least negligible (see Reference 5.25 for a criteria for

neglecting modal damping coupling), the structure modal damping can

be calculated by modal strain energy method [5.26,5.27], without

having to construct and assemble the finite element damping matrices.

The method is analogous to that given in Section 5.1.3.2, the differ-

ence being in the use of undamped normal modes instead of the damped

deflection shapes. Thus the system damping ratio, r' is given as

[5.20]

n e
I (W +- ne(SE)eeI r =e r max (.8
einl r 2(5.38)

r n
I (SE)a
e 1 max
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where is the element damping ratio evaluated at its resonance
e e

frequency, w , 'r is the material loss factor at frequency w and

(SE) e is the peak stored energy in the element. In the absence ofmax
viscous damping the loss factor in rth mode is

iE ne (SE)e

-el (5.39)
r n

Z (SE)e
el max

where nr is as defined in the modal equation of motion

2
r + nrWr+ W r Q(t) (5.40)r rr r r r

It must be noted that the energy method does not yield off-diagonal

damping terms. Furthermore, with an increasiig amount of damping,

the damped resonance frequency departs further from the undamped one

which introduces errors through incorrect material property values.

This situation is further aggravated in the presence of nonuniform

distribution of damping in the structure.

In reference r5.27] an empirical correction procedure is given for
improving the accuracy of the MSE prediction for frequency dependent

material properties. Since the modal frequency depends upon the

value of material modulus which is not known a priori, the problem

of determining correct material properties in the =dal calculation

is resolved as follows. A sequence of normal mode runs is made for

a range of assumed material property values. Then by correlating

the material property versus frequency curve with the mode frequency

versus material property curves, the required consistent material

property values ?ie obtained for each mode (Figure 5.3). Normal mode

analysis must again be performed for each mode to get the correct energy

distribution to use in equation 5.38.
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C. Transient Response Analysis

The equation 5.34 may be integrated step-by-step in time to solve

for the response due to arbitrary F(t) as is done in the direct solu-

tion method. In reference [5.281, the methods of time integration

and the accuracy and stability aspects of the numerical conputations

are discussed. The number of governing equations 5.34 can be made

much smaller than in the direct method by retaining only the signifi-

cant modes in the modal superposition equation 5.33. The criteria

being that under a given loading only the first few modes are signif-

icantly excited and the contribution of the higher modes is negli-

gible. T.o situations arise depending upon whether the damping is

proportional or non-proportional. For proportional damping the equa-

tions uncouple, giving

9r + 2C Wr r r~ + " W 2 (5.41)

r r r r r

the number of equations being the number of modes retained in the modal k

expansion equation 5.33. The solution of equation 3.41 yields the

values of the modal participation factors, C r The physical displace-

ments of discrete points in the finite element model are recovered

ustig equation 5.33. The analysis leads to a response-time history.

D. Frequency Response Analysis

Response to harmonic inputs is governed by the modal equation (5.34)

with the right hand side defined as

T 0 e (5.42)

F being the real force vector, and w the excitation ftequency. The-o

discussion concerning coupling of the modal equations in this case is

similar to that for che transient case.

In [5.291 an extension of the modal response method is given to treat

problems involving frequency dependent rzterial properties. The
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method is similar to that used in [5.27]. The eigen problem of

undamped structure is solved for two values E' and E" of storage

modulus, E, of the damping miterial. These two values bracket the

variation of the actual modulus values in frequency range of inter-

est. Corresponding to the two modulus values, two sets of natural

frequencies w ,... and wl" 2 .. , are obtained.

The natural frequencies vary linearly with the modulus as shown in

Figure 5.3. More precise variations can be obtained if modal anal-

yses are made for intermediate values of the material modulus. The

intersections of the lines A B 1 , A2 B2 etc., with the curve of the

material characteristic leads to the values of the storage modulus

that should be used in calculating modal properties. Then eigen-

problems are solved for each mode to be used in the modal superposi-

tion, each modal solution using the storage modulus values appropri-

ate to that natural frequency. Having thus obtained the modal

properties (mode shapes, generalized mass, stiffness and damping)

for each frequency, the equation of motion is obtained in a manner

similar to that for equation 5.41, which can be solved for desired

forcing frequency. The analysis leads to amplitude versus frequency

response behavior.

5.1.3.4 Dynamic Response by Complex Mode Methods

in the presence of widely varying magnitudes of damping in the structure,

the undamped normal --odes become coupled and cannot be used to specify a sin-

gle damping ratio or loss factor corresponding to any one mode by which to

measure or quote the modal damping. This difficulty is overcome through the

use of damped complex modes. For structures with viscous damping the method

is given by Foss 15.30], and for structures with hysteretic damping- by Mead

15.331.

In the Foss method, a=litudes of damned free vibration eigennodes are

chosen as the generalized coordinates, and the amplitudes of damped forced
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vibration modes are used in the Mead method. The two methods are described

in the followAng paragraphs.

A. Damped Eigenmode Method

The complex mode shapes and eigenualues of the damped structure are

determined from the homogeneous solution of the equation:

+ B(5.43)1

we [1 , B'' - ' (t)t (5.44)

The eigensolution of the form Y = eAt leads to a set of 2n (n being
the order of the K or M matrices) nu=bers of eigenvalues, X., and

corresponding 2n number of eigenvectors, both comlex, with the prop-

erty that the eigenvectors diagonalize the matrix equation 5.43 i.e.

if r a (5.45)

The eigenvalue is denoted by

r =a +jW

The im-girnary part defines the damped natural frequency while o

defines an associated decay rate related to the amount of modal damp-

ing. In terms of an undamped frequency, , 0 and a critical dampingoU
ratio, , 0 and w are of the form

C " ft C (5.46)

fa 4.0 ;-7 (5.47) k
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This method, like the normal mode method, does not permit frequency

or amplitude dependent material properties. However, no restrictions

regarding the magnitude or the distribution of the damping are needed

for the method to be applicable. The major drawback of the methods

based on the complex modes is that it is computationally expensive,

the number of equatiors beIng twice that in the normal i..de case.

Equations of motion in the complex mode coordinate, Z, are obtained,

using the transformation.

Y (5.48)

Where I is the complex mode matrix. Using equation 5.48 in 5.43 and

premultiplying by [ I T leads to the uncoupled matrix equation

[ Z TQ (5.* -'

where [ I J is 2n x 2n diagonal mode value matrix, and use is .aade

of the orthogonality properties expressed by equations 5.45. &gaiLn

the use of a modal method is advantageous only if a severely truncp-ed

m-de 3et is used in equation 5.48.

In a manner similar to that described in the normal mode method, the

tran lent and frequency response can be calculated using the complex

modal equation 5.49. For further details see references [5.31,5.321.

B. Damped Forced Vibration Mode Method

This method is applicable to harmonic vibration only since it is based

on hysteretic damping.

In reference [5.33] Mead shows that a unique specification of the

damping of the modes can only be made by considering the forced

vibration modes excited by a harmonic external loading which is
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proportional to the locU inertia loading but which is in phase with

the local velocity. This method is a special case of the more gen-

eral characteristic phase lag rethod [5.3 4 ]. The general case how-

ever does not have the computational simplicity of Mead's method.

The Mead method is as follows.

Consider the equation of motion

_M + (E +iH) _ _ e '  (5.50)

where _* is a column of forces equal to in times the inertia force

corresponding to the harmonic vibratioa

- (5.51)

-o = i11u 1 (5.52)

Putting both equations 5.51 and 5.52 into 5.50, we find

[K - W2(1 + in) g + iHj -o (5.53)

From which the complex eigenvalues, w2 (1 + in ), and corresponding
r r

complex modal columns, can be determined. The modal columns" r

satisfy the orthogonality condition

T
r t(5.54)

K+ i0) 4-0I

an.T T T

±rHrjm A;rKrjk rIJ!±jh r (5.55)

are the complex modal coefficients.
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Next introduce the new column of damped forced normal mode

coordinates- v, so that

-_ (5.56)

and the modal equation of motion becomes

a(02 (1 + in)-w2 ) -s e .

r

which can be solved to give

T bat

V r a _.r2 2) (5.58)

The above equation has the form of a single degree of freedom fre-

quency response function, resonating at frequency w r with the loss

factor, n r . The system vibrates in the complex mode, r"

It is interesting to note that when the damping is distributed in

proportion to the stiffness of the system, the damped forced normal

ro!des are identical to the undamped normal modes from equation 5.53,

and undamped normal modes can be excited at their natural frequencies

by forces which are equal to the in time5 the inertia forces, where

n is the system loss factor.

5.1.3.5 Substructuring Methods

The substructural analysis methods are the best and sometimes the only

approach for dyr.amic analysis of large or complex structures. The methods are

based on subdividing the large structure into smaller parts which are analyzed

separately. The system dynamics is then obtained by solving the system equa-

tions obtained by analytically coupling the dynamic characteristics of each

substructure. Through certain reduction techniques applied at the substruc-

ture level, the size of the coupled problem is reduced considerably, as com-

pared to the size of the original direct system problem.
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Two classes of methods for dynamic reductions are used with the finite

element method. The first class, known s dynamic condensation [5.35] is

widely used when finite element models of all the components are avrilaule.
The me$-hod involves elimination of degrees-of-freedom that are assimed to have

negligible effect on mode shapes and thus vibration response of the structure.

Dynamic results are sensitive to the choice of the degreces-of-freedom to be

eliminated.

In the second class of dynamic reduction methods zermed component mode

synthesis [5.361, the component dymnics are --pecitied in terms of a truncated

set of its generalized coordinates. Many techniques in the category of modal

synthesis have been devised. Th.ese techniques are ideally suited for systems

involving components that are characterized in experimental modal tests.

A brief discussion of these methods follows; details may be found in

references 15.3, 5.36-5.39, 5.45].

A. Dynamic Condensation:

Consider an isolated substructure consisting of simple finite ele-

ments . The undamped free vibration equation of the structure is

_W2 0 -059

where the matrix equations are partitioned in terms of the degrees-

of-freedom (DOF) 'm' to be retained and DOF 's' to be reduced out.

The m DOF includes substructure connection interface as well as any

interior DOFs. The basis of reduction is that the inertia forces on

the 's' degrees of freedom are negligible compared to static forces.

This leads to the following relation between the m and s DOFs. r

5-25
r



SZ TU (5.60)

where

the reduced stiffness, mass, and damping matrices are given as

+ TT -" TMS ? (5.61)1

+ TT r ex T+ TC8+ T

and the load ector as
I

F- P

Each substructure has its mass, stiffness, damping, and load similarly

partitioned and reduced. Assembly of the reduced substructures

matrices leads to the system equations of motion. Geometric compati-

bility between substructures is automatically assured by the use of

the 'i' DOF es generalized coordinates. The accuracy of these methods

is very sensitive to the choice of the 'W' degrees-of-freedom

B. Component Mode Synthesis

A number of variants of this method exist differing mainly in the

manner the substructure matrices are reduced and subsequently oupled

to form system equations. A representative method is briefly

described here.

Corsider the equations of mtion of an uncoupled substructure

MU + C U + (K + iH) U - F (5-62)
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The substructure physical DOF, U, are represented in terms of

substructure generalized coordinates, _R, so that the ntmber of

substructure DOF can be reduced, thus

- (5.63)

The * matrix contains substructure vibration modes, static deflection
functions, etc. Changing the basis from physical coordinate to gen-

eralized coordinates the substructure equation of motion becomes

T T T T T (5.64)

Equations of the above form may be written for each substructure and

formally assembled to give

S+ S& + (b + ) - _ (5.65)

%here the matrices m, c, etc are the assembled system matrices in

uncoupled system coordinates, _. Constraint relations of the type

q 0 (5.66)

exist between the components of j due to geometric compatibility at

the substructure interfaces. Equation 5.65, together with the con-

straint equation 5.66, defines the problem of the assembled scructure.

Specific modal synthesis methods are defined by the choice of dis-

placement functions used in the 6 matrices in equation (5.63) and the

procedure used to treat the constraint equation (5.66).

It should be noted that the substructure dvnaic matrices m, c, h,

and k in equation (5.65) do not need to be derived fro= a finite

element model, and may be obtained experimentally. Modal synthesis

procedures are also available that admit dynamic characterization of

substructures in terms of frequency response functions obtained con-

veniently in modal testing, references 15.40, 5.41).
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5.1.4 Computer Progras

A large nv'ber of computer programs are available for dynamic response

analysis of damped structures. Since early 1970 several bibliographies, data

sheets, and tables have been compiied about finite element software. Most

recent surveys of computer programs for linear and nonlinear dynamic analysis

are in references [5.42-5.451.

A summary of available computer programs relevant to damping design

analysis is g~.ven in Table 5.1. The table is essentially the same as that

given in reference [5.43], except for some updates. Modeling features vary

from one code to the other and therefore it is often difficult to identify the

proper code that meets a specific need. Some basic factors which affect the

selection of a code are as follows:

" Structural Elements - The program should provide a complete elet
library including rod and beam elements, membrane, plate and shell
elements of various shapes, three-dimensional elements and axisym-
metric solid and shell elements.

* Mass and Damping Models - The program should provide a choice between
lumped and consistent mass models. Likewise it should permit model-
ing of structures with variable amount and distribution of damping.
It is desirable to have both the viscous as well as hysceretic damping
models.

" Analysis CapabiLities - These include the solution methods for eigen-
reduction, time integration and response analysis, energy distribution
in free and forced vibration modes, damped frequencies, and mode
shapes.

" Substructure Syntlbesis Capabilities - To analyze structures with
large number of degcees-of-freedom or with substructures that are
represented by their modal properties. Methods such as substructure
analysis and component mode synthesis are a desirable feature.

In addition, several other vital features of the program such as allow-

able material properties, data generation, graphics, user interiace, etc.,

need to be considered in zelecting a -ode. For a detailed discussion of the

code selection criteria see References [5.43, 5.46, 5.47).
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The majority of the computer programs use normal mode based modal

superposition methods for analysis. Viscous damping is most commonly used.

The use of modal superposition using complex eOgen solution is very limited.

For hysteretically damped structures, the complex stiffness model is used and

the analysis is restricted to harmonic response calculation. The method of

damped forced vibration modes, althougb applicable to hystersis damping is

not implemented in any program.

Some special pur_tose computer programs for the analysis of damped struc-

tures are described in reference J5.42]. The programs ASTRE, DAMP, KSHELL,

and SAMIS, surveyed in 15.42], all have the complex frequency and mode shape

calculation capability.

A partial list of software dissemination and users group sources is given

in the following list, A more complete list may be found in Reference [5.481.

* ASIAC - Aerospace Struccures Information and Analysis Center,
AFFDL/FBR Wright Patterson Air Force Base, Dayton, Ohio 45433.

" CEPA - Society for Computer Application in Engineering, Planning and
Architecture, Inc., 358 Hungerfo-A Drive, Rockville, MA 20850.

" COSMIC - Computer Software Managea..nt and Information Center,

112 Barrow Hall, University of Georgia, Athens, GA 30602.

" CES - Users Group, Inc., P.,. Box 8243, Cranston. RI 02920.

* ICP - International Computer Programs, Inc., 9000 Keystone Crossing,
Indianapolis, IN 46240.

" NISEE - National Information of Service for Earthquake Engineering,
519 Davis Hall, University of California, Berkley, CA 94720.

" NTIS - National Technical Information System, U.S. Department of
Commerce, 5285 Port Royal Road, Springfield, VA 22161.
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F
5.2 INTEGRATION OF FINITE ELEMLNT MODELING INTO THE DESIGN PROCESS

The finite element technique provides the designer with an accurate and

economical means of predicting the dynamic behavior of either damped or undamped

structurc-g. As such, finite element analysis can play an important role at

several stages in the design of damping treatments. This section describes a

procedure for integrating finite element analysis into the damping design pro-

cess and gives an example to illustrate the procedure. In references [5.49 -

5.511 a variety of damning design analysis problems are illustrated.

5.2.1 Analytical Procedure in Damping Design

The procedure may be divided into the following .teps:

1. Perform an assessment of vibration problems present in a preliminary

undamped design.

2. Evaluate different damping concepts oi spe.nitic pt[.c~tir.

3, Evaluate alternate damping treatmen..i" design,

4. Qualify final design configuratlocs.

Each of these applications is discussed in grcit,; detail In U& foliowing

paragraphs. A schematic oi the damping process with the finite element method

is shown in Figure 5.4.

In the preliminary design phase, finite element modeling of a structure

is a valuable tool in determining the existence of potential vibration prob-

lems. Conclusions can be drawn on the basis of either a natural frequency

solution (to identify critical excitation frequencies and troublesome modes)

or a frequency response analysis. Furthermore, examination of the vibration
mode shapes will often help to determine those locations in which the appli-

cation of damping treatments will prove most effective.

During the actual design of a damping treatment, a rational choice if

the type and location of the treatment can be made much more easily by the
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Figure 5.4. - Finite element analysis in damping design procedure.

If a model has been developed during the preliminary design stage, simple

modifications of such a model vill often suffice for identifying the most

desirable type of damping treatment to be used. Experience is frequently a

sufficient guide to the selection of a damping concept for a particular

application. However, in more complex situations, finite element analysis can

often provide this same familiarity with the problem, at only modest expenditures

of time and money.

Once a damping treatment has been selected (either on the basis of

experiments or analytical studies), finite element techniques are readily

employed to determine the exact design configuration based upon costs, weight,

or perforeiance criteria. A single finite element model can generally serve

as a means of evaluating a great number of minor design changes, such as
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variation in amount and distribution of damping, constraining layer thicknesses,

material properties, etc.

Finally, the finite element method can be used for the final qualification

of a damping treatment design. The performance of the final design can be

assessed accurately and efficiently for a variety of operating environments

(temperatures, loading, excitation, frequency). Besides the displacement I
response, stresn information, can also be generated in the finite element

solution to identify potential fracture or fatigue problems whicIh would ot

otherwise be anticipated prior to production.

Obviously, the finite element method represents a potentially poweefull

tool in several stages of the design process. Finite element simulations can,

in most instances, be performed more quickly and economically than prototype

testing, and can provide the opportunity for modeling the structural response

under operating conditions which may not be easily obtained in laboratory

testing.

The recent interest in finite element technology as an aid to the

designer has been sparked at least, in part, by the development of computer

graphics methods which can assist in both the preparation and interpretation

of finit. element data. The computer graphic processors can aid in:

* Generation of finite element data

o Model verification

* Assimilation of analysis results

An example illustrating the above design analysis procedure is stumarized

in the following paragraphs.

5.2.2 Example Damping Analysis

This example illustrates how the finite element method can be used

efficiently within the general process of designing a damping treatment :o

reduce the amplitude of forced vibrations. First, a hypothetical structure
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is defined which is presumed to have natural frequencies of vibration in the

vicinity of the steady-state input frequency. A finite element model of the

structure is constructed, and the natural frequencies are determined using a

finite element computer program. Structural damping is then assumed in var-

ious parts of the structure. The results of the finite element program are

used to determine the most effective areas to apply layered damp'ng treatment.

Finally, constrained damping is applied strategically, and the finite element

..rogrm is used to determine the effectiveness of the damping treatment.

4. Problem Definition - The particular problem selected for illustration
of che application of finite element analysis in damping treatment
design is similar to the engine exhaust duct shown in Figure 5.5.

L. Finite Element Model - Figure 5.6 shows the finite element model
sed in this demonstration study. A cylindrical shroud with three

flac vattes was modeled with variable 8-27 node solid finite elements.
The boundary cotditions and dimensions are shown in Figure 5.6.
Although the full structure is shown, only a symmetric half of the
structure on one side of a plane of symmetry through the bottom vane
was actually modeled for computation.

c. Natural Frequency Analysis - The finite element program of refer-
ence [5.52] was used to compute the natural frequencies and mode
shapes of the model of Figure 5.6. Perspective plots of the first
three vibration modes are shown in Figure 5.7 and end-on views of
the same modes are shown in Figure 5.8. The modes were obtained
by solving the eigenvalue problem defined by equation [5.31!.

d. Preliminary Damping Analysis - In practice, damping treatment is
applied to one or more exposed surfaces of a structure. A complete
finite element model containing multiple added layers would be quite

complex and relatively expensive to analyze. Therefore, a prelimin-
ary damping analysis can be performed in which the elements of the
original finite element model are assumed to be internally damped.
In this case, four different cases are considered:

1. No damping

2. The vane elements have 5 percent damping

3. The shroud elemenLs have 5 percent damping

4. Both the vane elements and the shroud elements have 5 percent
damping.
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Figure 5.5. - Engine exhaust duct.

The results of the four cases for mode 2 are shown in Figure 5.9.
In this case the amplitude and phase angle for the displacement uf
No. I (Figures 5.8 and 5.9) are plotted versus input frequency.
The curves are generated by solving Equation 5.40 for several values
of the input frequency for each of the four cases shown. Equa-
tion 5.25 was used to compile the system loss factors. Figure 5.9
indicates that considerable reduction in amplitude can be obtained
if damping is present.

e. Final Damping Design Analysis - The preliminary damping analysis of
the preceeding section provides the designer valuable information
which can be used along with other data to select a damping treat-
ment. After the damping treatment has been designed, another finite
element analysis can be performed. This time the damping treatment
is modeled separately tc obtain an accurate representation of the
effectiveness of the damping design. Figure 5.10 shows a detaileI
finite element model of the structure urder consideration having a
hypothetical damping treatment. in this case, for illustration, the
shroud has a constrained damping layer applied to the outside diam-
eter, while the vanes have an unconstrained damping layer applied to
both sides. The detailed model can be used to proof-check the final
design or used at each stage of an iterative design process.
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Figure 5.6. - Finite element model.
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Figure 5.7. - Mode shapes of engine exhaust duct (perspective view).
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Figure 5.8. - Mode shapes f engine exhaust duct (end-on view).

5-37



SYSTEM DAMPING

PH . AMP1 0 NO DAMPING

3 2 .05 VANES ONLY

.04 3 .05 SriROUD ONLY

4 .05 SHROUDANDVANES

MVTRIAL DAMPING

-. 0

-4. 1- P- 09 __j -----

40 . 41M. 4M0. 431L 440-. 45 . 4M8. 478. 461E3 4W. 5M
FORCING FREQUENCY

Figure 5.9. - Effect of damping treatment on the amplitude and frequency
response of the second mode of engine exhaust duct.
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Figure 5.10O. -Detailed model with dampoing laver and constraining laver.
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5.3 A NOTE ON FINITE ELEMENT DISCRETIZATTON OF LAYERED DAMPING DESIGNS

Finite element analysis because of its versatility in modeling general

structutes is ideally suited for modeling passive damping configurations on

integrally damped structures. However. the modeling of layered damping designs

on complex structures pcses two problems. First of all, the thin damping
layers result in high aspect ratios (length ; thickness) of the 3D solid

elements representing the dampin6 system. Secondly, if a multiiayered damping

system is being modeled, there are a large number of degrees-of-freedom.

This section discusees ways to reduce the number of elements representing the

damping system and the accutacy of the dampiag prediction using high aspect

ratios. The recommendations made in the following paragraphs are base_4 on a

very limited number of practical applicationsc 15.531.

5.3.1 Results Using High Aspect Ratios

The construction of an FE model for dynamic analysis is usually goverr.ed

by giving consideration to the number and type of modes that are to be deter-

mined from the model. The length and width of the elements in the base struc-

ture are thus determined by accepted modeling practice. If a constrained layer

damping system is then modeled on the structure and if the damping and/or con-

straining lavers are thin relative to the base structure, the damping and/or

constraining layers may have high aspect ratios (length + thickness).

Experimental tests and corresponding FEA evaluation [5.53] of a canti-

lever plate with a double constrained layer system showed that aspect ratios

up tv 1000:1 yield very good analytical results. The undamped FE model of

the plate is shown in Figure 5.11. Figure 5.12 shows the cross section of

one cf the damping configurations tested and analyzed. This configuration,

referred to as Plate 1, consisted of the 0.25-inch (6.35 ma) thick plate with

0.002-inch (0.051 =) thick 3M iSD-ll0 damping material, 0-007-inch (0.178 mm)

thick stainless steel middle constraining layer, 0.003-inch (0.076 mm) thick

Soundcoat MN damping material, and 0.007-inch (0. 178 mn) thick stainless steel

cuter constraining layer. All layers in the FE model were modeled with 3D solid

thick shell elements. Since the elements were 2 inches (50.8 MM) long and some

elements were as thin as 0.002 in (0.051 mm), the aspect ratio on some elements

were 1000 to 1.
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Figure 5.11. -Cantilever plate finite element model.
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The results of the FEA and test of Plate 1 are shown in Figure 5.13, for

the second bending mode. It can be seen that there is very good agreement

between the test results and the FE forced vibration results. The results

from the FE normal mode are considerably higher than the test results. It is

felt in this case that the strain energy method using the forced response more

closely matches the test. In 'oth the test and the forced response analysis

the plate was subjected to a small tip load. Another cause of the discrepancy

could be that the tip load does not excite a pure mode. Indeed damping couples

mode together. Perhaps if the test had beer. conducted with the clamped end of

the cantilever mounted on a shaker, the mode shape of the cantilever plate may

have been more nearly a pure mode rather than exciting the cantilever at the

tip. Then perhaps the normal mode method would more closely match the shaker

test.

A second damping configuration evaluated, referred to as Plate 2, is

shown in cross section in Figure 5.14. This damping system had two layers of

the same damping material, each 0.002 in. (0.051 -m) thick 3M ISD-112, separated

by a 0.003-in. (0.076 am) thick middle constraining layer. The outer constrain-

ing layer was 0.007-in. (0.178 mm) thick stainless steel. All layers were

modeled with 3D solid-thick shell elements. The aspect ratios of the damping

layers were 1000 to I.

The results of the FEA and test of Plate 2 are shown in Figure 5.15 for

the second bending mode. Again there is very good agreement between the test

results and the FL -forced vibration results. As for the Plate 2, the norm al

mode results are higher than the test results; the same explanation given for

Plate 1, holds here as well.

Results for the first torsion mode are shown in Figure 5.16. The forced

vibration results agree well witb the test results, as do the normal mode

results. In this instance, driving at the tip of the cantilever for the forced

response (and test results) yelvds approximately the same results as the normal

mode.

.4/S-k 1
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Figure 5.13. - Analytical and experimental results for Plate 1,
second bending mode.
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Figure 5.14. -Cross-section of Plate damping system.
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Figure 5.)5. - Experimental and analytical results for Plate 2,
2nd bending mode.

It is obse'red, in the Plate 1 and Plate 2 results presented so far, that

although the magnitude of the peak damping and the shape of the loss factor

curve predicted by the FE forced vibration is nearly identical to the test

results, the forced vibration curve is shifted to 25OF (-4*C) to the left of

the test data. This temperature shift could be the result of two causes.

The finite element model of the cantilever plate could be stiffer than the

actual specir: n; this is in fact the case, with the second bending mode fre-

quency apr=ximately 8 percent high. The other cause could be that the actual

damping material is stiffer than the properties being input into the FE model.

It is likely that the cause is a combination of these two factors.
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Figure 5.16. - Experimental and analytical results for Plate 2,

1st torsional mode.

The results presented so far have been for aspect ratios up to 1000 to 1.

To see if the prediction of loss factors could be improved, the FE model was

changed. Twelve elements were used along the length of the cantilever instead

of six and the aspect ratio wds correspondingly cut by a factor of two. The

change in the results due te the lower aspect ratio were insignificant. There-

fore, the use of aspect ratios up to 1090 to I was acceptable. The use of

aspect ratios greater than 1000 to 1 needs further investigation.

5.3.2 Modeli-g Techniques to Reduce the DOF

Even a simple structure with a multiconstrained layer damping system can

Z, e a large number of DOFs. As an example, the catilever plate discussed

previously has 1300 DOFs.
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Therefore, two means of reducing the number of DOFs were investigatad,

The first method involves the use of membrane elements to nodel the constrain-

ing layers. The second approach is to replace several layers .in the damping

system by an "equivalent" element.

a. Use of Membrane Elements for Constraining Layers -. The purpose of the
constraining layer in a constrained-layer damping system is, as Its
name implies, to constrain the damping material. During bending, the
constraining layer places the damping material in a state of shear
stress and thus dissipates energy. The constraining layer, being
stiff and usualiy very thin, undergoes very little shear deformation
and is subjected to in-plane loading. Thus it has the characteristics
of a membrane and can be represented by a membrane element. The damp-
ing layer on the other hand undergoes considerable shear deformation
and therefore must be modeled with shear deformable elements such as a
3D solid thick shell (solid) element.

The use uf membrare eiements for constraining layers as applied to
the Plate 1 damping configuration is shown in Figure 5.17- The nodes
of the membrane elements are coincident with the nodes on the upper
surface of the damping layers. Therefore, the membrane elements do
not add any DOFs to the three solid elements used for the damping
layers and plate. Thus the damping system shown in Figure 5.12, which
was modeled by five solid elements through the thickness, is modeled
by three solid elements and two membrane elements, resulting in a
33 percent reduction in DOF.

Figure 5.18 shows the FE forced vibration results using the membrane
and solid elements model. Also shown are the FE forced vibration
results using all solid elements, previously shown in Figure 5.13.
It is seen that the two methods compare very favorably. Notice that
the damping predicted by the use of the membrane elements is nearly
uniformly lower than the results using all solid elements. This is
probably due to the outer damping material and outer constraining
layer not being as far away from the neutral bending axis because the
membrane elements have no physical thickness.

A small error is introduced for structures with constraining layers
that are thin relative to the base structure, such as Plate 1. Thick
constraining layers wozld produce a greater error. The reader is also
cautioned about using the membrane elements on curved surfaces as the
membrane bending coupling is neglected, and the effect of its absence
cannot be generalized.
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Figure 5.17. - Plate I modeling scheme using membrane elements.
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Figure 5.18. - EA results comparing all solid model
to membr-i-e model.
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b. Use of Equivalent Solid Element - The other means of reducing the
number of DOF become apparent from studying the Plate 2 configura-
tion (see Figure 5.14). Since the two damping layers are the same
thickness and of the same material and are separated by a thin middle
constraining layer, it seemed that the overall behavior of the three-
layer system would be governed by the soft damping materials.
Furthermore, it seemed that the three layers could be represented

by a single "equivalent" layer. it only remained to determine the
dynamic properties of the three layers. The properties were deter-
mined from a symmetric sandwich beam test. Usually to determine the
properties of a constrained layer damping material the material is

placed between sv~metric sandwich beams and tested over broad tem-
perature and frequency ranges, as discussed In Volume I, Section 2.
In the present case, the three layer system was placed between sym-
metric sandwich beams, as shown in Figure 5.19, and tested as if it
were a typical damping material. The properties could also have been

determined analycically thus avoiding the test procedures.

The applization of this modeling technique to the Plate 2 configura-
tion is shown in Figure 5.20. Figure 5.21 shows the second
bending mode FE forced vibration results using all solid elements

Figure 5.19. - Equivalent solid beam test specimen.
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Figure 5.20. - Plate 2 modeling scheme using the
equivalent solid approach.
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Figure 5.21. Analytical results comparing the all
solid model to the equivalent solid
model for the second bendkig mode.
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(previously shown in Figare 5.15) and the equivalent solid element.
The results are nearly identical. The same is true for the first
torsion mode shown in Figure 5.22.

To sumarize, the modeling tecbniqtt..s for reducing the DOF were found
to be accurate. The use of membrane elements for constraining layers
predicts a slightly lower value of damping than the standard approach
and reduced computer costs 44 percent in the present analyses. An
equivalent solid element replacing the two dabing materials and
middle constraining layer geve nearly identical results as the stan-
dard modeling approach. This technique reduced computer costs
60 percent.

5.4 SUMMARY AI) CONCLUSIONS

An overview of the finite element modeling procedure in the design of

damped structures is presented. First a brief derivation of the discretized

equations of motion is given primarily to define the notations and fix the

ideas for subsequent discussion. Methods of modeling damping within the
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Figure 5.22. Analytical results conparing the all
solid model to the equivalent solid

model for Plate 2 first torsion mode.
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framework of finite elezent allysis. are discussed next. Procedures are given

for constructing damping matrices using known damping data and stiffness and

mass characteristics of the structurz. Frequency dependent, proportional and

nonproportional, viscous and hysteretic damping models are discussed. Other

models which my be a better representation of material damping behavior, but

are not well developed for practical applications are relegated to the cited

literature. Response analysis methods, relevant to the effectiveness of

assessing damped designs, are described. it is noted that the direct response

analysis methods permit greater generality in regard to modeling complex

material behavior and loading conditions but at an increased computational

cost. The modal strain energy method is seeit as a coiputationally convenient,

though less accurate, alternate for a cost-effective analysis at the prelimi-

nary design stage. The limitations of this as well as other methods are noted.

For structures with heavy and nonuniformly distributed damping, the coupling

of classical normal modes can not be ignored; complex mode methods are given

to treat such problems. Analysis methods are described for structures which

require solution by partitioning the. system owing to coxputer and/or organiza-

tional constraints. Major couercially available finite element computer

programs, their response analysis capabilities and information concerning

their availability are described. it is observed that for the most part,

response analysis methods based on direct solution and normal mode superposi-

tion are iplemnted in the existing codes. Few programs have. complex mode

capability for viscously damped systems. None of the general-purpose programs

have the capability to treat transient or complex modal response problems of

hysteretically damped systems. Substructure methods are implemented in some

general-purpose finite element compuLer programs. For the most part, this

capability is developed independent of the finite element programs. A pro-

cedure is described next for integrating the finite element analysis into

damping design. An example is giver illustrating the important points of

this procedure. Finally, two case studies are preseated that t iscuss prac-

tical ways to reduce the size of the discretized problrm of damped

structures.
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TABLE 5.2. LIST OF SYMBOLS FOR SECTION 5

SYMBOL DEFINITION

[e  Element sirain displacement matrix

C Viscous damping matrix

De  Elasticity matrix

_F Assembled load vector

Fe  Vector of concentrated nodal forces

F Peak amplitude of harmonic force

G Damping matrix

H Hysteretic damping matrixMIElement damping matrix

Substructure dynamic matrix

-11

K Assembled stiffness matrix

Ke Stiffness matrix

K G Reduced stiffness matrix

k Substructure dynamic matrix

M Assembled mass matrix

e Cosi-tent mass matrix

tG Mass matrix

m Degrees-of-freedom to be retained in isolated substructure
matrix equations

Substructuze dynamic smatrices

m Generalized mass
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TABLE 5.2. LIST OF SYMBOLS FOR SECTION 5 (Continued)

SYOL DEFINITION

Marix of shape functions

Total number of finite elements in the assembly or the order of
K or M matrices

P Substructure generalized coordinates

p Number of modes in which damping is specified

l(t) Uvcoupled system coordinates

S Portion of surface of V where t is specifieda

(SE)e Peak stored energy in the element

s I Degrees-of-freedom to be reduced out of isolated substructure
I m&trix equations

T MatrIx defined in equation 5.60

t Time

t External traction

U Vector of all independent mode di;placements

_
e  Nodal displacements

3? I Vector of element nodal displacement

iVector of raodal displacements that characterize the spatial

form of the reaponseo

U Transposed complex conjugate of U correspor -in? to excitat-on
frequency, w.1 ~ 1I i I

I, I
v Body

Y Eizensolution ratrix I

Modal intenstty matrix
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TABLE 5.2. LIST OF SYMBOLS FOR SECTION 5 (Continued)

SSYMBOL DEFINITION

z Complex mode coordinate

a Variational operator

6 T Discrete virtual displaceaents

6 ij Kronecker delta

Z- Strain

I'd Loss factor associated with dissipation behavior in
dilatational modes of vibration

e Loss factor of the element material at excitation frequency,

ns  Loss factor associated with dissipation behavior in shear nodes
of vibration

2n x 2n diagonal mode value matrix
Xr, U Te's parametars of the isotropic elastic material in the

elasticity matrix D

Ui , Xi  Material parameters of the damping matrix. G

V Damped forced normal mode coordinates

w Forcing frequency
e Natural frequency

wn Modal frequency

r I NOM diagonal natrix wIth tlement in r row and column being wr
fI

bUamped f reqI-ancies

Column of forces equal to int es the inertial force corresponding
o haranic vibration U t .e
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TAbLE 5.2. LIST OF SYMBOLS FOR SECTION 5 (Continued)

SY4BOL DEFINITION

Is Mode shapes corresponding to ws

T Complex mode matrix

p Mass density of the structural mater'al

oe  Stress

1 rth mass normalized mode shape of und~nped structure

_e IVector of modal coordinates

Viscous modal damping ratio

4i System dmping ratio

n Modal damping ratio

Crs Modal-damping coupling ratio
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SECTION 6

MEASUREMENT OF RESONANT FREQUENCIES AND DAMING

6.1 INTRODUCTION
The purpose in th.Ls section is to briefly review the methods used in

determining the resonant frequencies and the damping of structural modes.

This field is still undergoing considerable change, spurred on by the need for

for modal parameter identification in the presence of nonlinear response, the

resolution of modes with identical fLequencies in the presence of noise and

the avoidance of truncation or smoothing errors. A review of parameter iden-

tification methods, and developments in these methods, is contained in Refer-

ence [6.1] with emphasis on ground vibration testing of aircraft. The

intention here is to concentrate on the well established methods rather Lhan

on the newest developments in the field, with emphasis placed on accurate

measurement of modal damping. System identification [6.21, which involves

changing the analytical model of the structure on the basis of measured nodal

parameters, is beyond the scope of this review.

The basic methods are discussed in Section 6.2 and the subsequent devel-

opment of these methods based on the Fourier and the Laplace transformp. are

discussed in Section 6.3. The errors in the measured damping resulting from

the use of the above periodic transforms in analyzing nonperiodic data and the

means of overcoming these errors are discussed in Section 6.4.

6.2 BASIC METHODS

The basic methods for measuring the rod~l frequencies and dayping include

the free vibration decay method in the time domain [6.3, 6.4, 6.51, and the

half power point [6.3, 6.4, 6.5] and the Kennedy-Pancu (K-P) [6.61 methods

in the frequency domain. These methods work best with well separated modes

in which each mode can be treated as a single degree-of-freedon system. Most

vibration response measurements, from a variety of structures, can be analyzed

on the basis of a single mode response. The basic K-P method can also be used

to analyze multimodal response provided the modes do not have close or

6-Ij[I



identical resonant frequencies. Even this problem can often be overcome by

se-cting a different measurement location where the response in one or the

other of the modes dominates. All of these methods are degraded by the

presence of spurious noise in the response data. Damping is especially

sensitive to the presence of such noise, accounting in part for the large
scatter observed in the measured damping data.

The basic theory ior the above methods is suvmarized in some detail in

the following sections, assuming a single mode response. All methods of
measuring damping are based on either the free vibration decay or the com-

plex frequency domain representation of the resonant vibration response.

6.2.1 Time Domain Analvais

The structural damping or loss factor, n, can be used in steady state

vibration analysis but has some limitations [6.7] when used in free vibration

or transient analyses. This problem is not encountered with the viscous

damping ratio, C. Since most structures, including those damped with visco-

elastic materials, have a viscous damping ratio of less than 0.2, the viscous

damping ratios extracted by all of the methods can be expressed in terms of

the loss factor by means of the following relationship

2c (6.1)

6.2... I Free Vibration Theory

The equation of motion for the free vibration of a single degree-of-

freedom system with viscous damping can be written as

Mw(t) + Cw(t) + Kw(t) - 0 (6.2a)

where M is the mass, C is the viscous damping coefficient, K is the sti'fness,

and i(t), w(t) and w(t) are the acceleration, velocity and displacement of the

mass, respectively. On dividing by the mass, the above equation becomes

L 2r *(t n = 0 (6.2b)
n n
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where Ln is the natural circular frequency given1 byn

n =(6.3)

and is the previously mentioned viscous damping ratio defiaed by

4 =(6.4)
C

where C , the critical viscous damping coefficient, is

Cc = 2 45i - 2Mw (6.5)

The general solution to equation 6.2b can be written as

w(t) = e S A Sin writ + B Cos n t) (6.6)( wt) (/77s

where A and B are constants defined by the initial conditions. The velocity

corresponding to the above displacement is

*i(t) = e 1  
7 A Cos j 7 Wnt) -BSin(J wt)l

4We n"AS In (12 wnt) + B Cos (i-' . t)' (6.7)

If the system is given an initial displacement wo, at a time t 0 (B wo)

and then released with a zero initial velocity, that is w(0) = 0 (A = w

,'ri7), the resulting displacement becomes

w(t) w e Cos n t h n Sjn (-Y7 nt
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[w e

_0

-Cos %W d t~ (6.8)

where *is the phase angle given by

Tan~=J7 (6.9)

and ,. is

W (6.10)

An exponentially decaying oscillation is obtained (Figure 6.1(a)) when 4<1,

which is the case for most structures. Critical damping is obtained when

1 and the vibration decays to zero without oscillating (Figure 6.1(b)).

-. I

0 - TIM --

1) W21

0 - v- TME-i t

6) 1 I WrMT~Y DAMPED)

- WO

Figure 6.1. Free vib.-ation res,)onse of dam ed
single degree-of-freedrn system
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The critical damping coefficient corresponding to this unit viscous damping

r ratio i. given in equation 6.5.

Equation 6.8 contains the natural circular frequency end the viscous

damping ratio in an extractable form. Thus, for a single degree-of-freedom

system, it is only necessary to displace the mass and then to release it

suddenly in order to reproduce the exponentially decaying oscillation

represented by equation 6.8. The quick stop method is another means of

achieving the same result. The mass in this method is excited by a harmonic

force that is first tuned onto the resonant frequency of the single degree-

of-freedom system and then suddenly removed. Th2 resulting exponentially

decaying oscillation can also be represented, over most of the decay, by

equation 6.8.

6.2.1.2 Impulsive Loading

The velocity of the mass of a single degree-of-freedom system, that is

subjected to an impulse I, is changed suddenly by I/h without undergoing any

significant displacement. On substituting these initial conditions into

equations 6.6 and 6.7, it follows that the resulting displacement of the mass

is given by

w(t) - I h(t) (6.11)

whe 'e

I -r~nt
h (t) =- W7-d Sin dt(6.12)

dd

is the impulse response function of the single degree-of-freedom system. This

impulse response function represents an exponentially decaying oscillation

similar to that in equation 6.8. For an impulse l(t), of arbitrary shape and

duration,t, the displacement in equation 6.11 becomes
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w(t) j l(t-t) h(!) d- (6.13)
Jo0

tWb T is aocTur time variable.

If an impulse, of durationt, is applied at the base of the spring,

producing a base displacement of wB(t), the relative displacementwR(t) of

the mass becomes

ad j . f v- t e)  ) Sin (wd {t-r}) dr (6.14)

where

wa(t) - w(t) - w(t) (6.15)

and wB(t) is the accelerntion of the base. Equations 6.13 and 6.14 both

represent exponentially decaying oscillations, subsequent to the initial

disturbance.

6.2.1.3 Logarithmic Decrement Method

The method used itu extracting the natural frequency and the viscous

damping ratio from the exponentially decaying cscillation of a single degree-

of-freedom system is known as the logarithmic decrement method. This method,

basically, involves measuring the aaio to peak amplitudes w I and w2 of two

adjacent decay peaks, as illustrated in Figure 6.1a. The log decrement 6 is

given by

tB

e nI Co s (d t - :)
6= n nI (6.16)

1e-tn! Cos (t4 it,+TI- g
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where Zn indicates a natural logarithm, tI corresponds to the time at peak wI

and T is the period of the decaying oscillation given by

T = 2,. (6.17)
W n V/l -

The value of the cosine term is the satae at time t1 and time t1 + T, i.e.,

one period later. Therefore, using the relationship in equation 6.17, equa-

tion 6.16 reduces to

6 in e-Wnti 1
in e _;W tT) = n ( e Cj ,T I

-CT = 24 (6.18)

Since r,, for most structures, is less than 0.2, fl-,- 1. With this approxi-

mation, the following relationship is obtained.

C 2 (6.19)

!n practice, it is more accurate to measure the amplitude after an elapse of

a number of cycles, for example . If the amplitude after N cycles is 'N+ ,

~then

!W te=z 9n (6.20)

N 6-;+
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Vand the viscous damping ratio is given by

= 2-1 ?nwt+l1 (6.21)

the natural circular frequency w is extracted from equation 6.17 and the

viscous damping ratio from equation 6.21.

6.2.1.4 ultlmodal Response, Circuit Noise and Filtering Effects

A sharp impulse contains energy over a wide frequency range and will,

therefore, excite many resonant modes simultaneously. Even displacing and

suddenly releasing the structure will excite more than one mode. Noise will

also be present in the measurement circuits, producing a random ripple super-

imposed on the multimodal decay time history. Filtering is used to isolate

the mode of interest and to reduce, to some extent, the level of the noise

ripple. The filter must, however, be wide enough so as not to affect the

free vibration decay in the selected mode [6.8, 6.9].

The effect of such a filter on the free decay can be illustrated by

considering the effect of an ideal rectangular bandpass filter on the impulse

response function (equation 6.12) of a single degree-of-freedom system. After

passing through such a filter, the resulting impulse reponse function, h(t1 ),

can be represented by the equation

I P jSin 2r f 2 (t-t 1 ) - Sin 2 f 1 (t-t 1 )
hC)= h(t) -- t- 1 dt (6.22)
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%;here f and f are the bandpass filter upper and lower frequency limits,
2 1

respectively. The effect of the bandpass filter on the impulse response

function is Illustrated t6.9J in Figure 6.2, for te following parameters:

fn = 20 Hz f2 = 36 Hz

= 0.02 f1 =25 Hz

Leakage, represented by the waveform below t-0, has been introduced by thE

filter. The impulse response function is similarly affected above t=0. This

leakage effect extends as much into the positive time region as it does into

the negative time region. The viscous damping ratio, extracted by the loga-

rithmic decrement method from the positive decay time history in Figure 6.2,

beyond the fifth positive peak, could be lower than the actual damping ratio

by as much as thirty percent. Widening the filter increases both the noise

level and the possibility of multimodal response. A free decay with two

modes, such as illustrated in Figure 6.3, cannot be analyzed accurately by

the basic logarithmic decrement method.

The quick stop method has an advantage over the impulse excitation method

since all of the excitation energy is concentrated at a discrete frequency

that is tuned onto the resonant frequency of the mode of interest. Thus one

mode at-a-time is excited. Circuit noise can be minimized by the use of band-

pass filters subject to the previously discussed limitations. Even with this

rU

Figure 6.2. Effect of bandpass filter on the impulse response function

it
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VTE - SE;ONO$

Figure 6.3. Typical aircraft stick pulse excited
free decay with beating

form of excitation, the free decay can be contaminated by a con~rlbution from

au, adjacent close mode.

The effect of circuit noise on the decay time history can_ also be mini-

mized by the use of a least squares type curve fit [6.10, 6.11) of test data

to both single and multlnmodal free v-ibration theory. Taus, both of th-e above_

problem areas can be overcome. 'The izplementation of these least squares

curve fit theories was made possitble by "he development of analov to d Ia

(A to D) converters over two decades ago. thereby placing the burden of the

analysis on the computer.

6.2.2 Frequency Domain Analysis

v.o2 r Foc ed Vihra - io- i th V's cou s Dapng,

H' 'he L-ass of a spring-mass-d-=; -_r syst_ is excited by a -nat=oh._-io frce

F sCos ,the equation of motion can be expressed by
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mw(t) + (;,(t) + Kw(c) - r co .,t (6.23)

where F I the amp Ittide of the force and ,. 114 the excI talt Ion c i rci Itnr fre-

qtency. Equation 6.23 can lmno be expromvd In complex form by

w(t) - 110w) F c Wt  (6. '_4)

where

i1(iw) = 1 (6.25)
M W 2 _ + 21 r, w w

is known as the frequency response function of the single degree-of-freedom

system and i represents the square root of minus one. The resulting displace-

ment to the harmonic force, obtained by taking the real part of equation 6.24,

can be expressed by

w(t) - w Cos (Wt - 4) (6.26)o

after the start-up transients have decayed, where 4, is the phase angle.

After substituting equation 6.26 into equation 6.2:1 the resulting zero-to-

peak amplitude, wo, of the displacement becomes

Fw 2 (6.27)

M (.J 2 + 4r 2 2

The phase angle can be obtained from the relationship

22. "n - ( ) 2. (k
Tan4)* 2 2 2 f (6.28)
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where f and f are the frequency and the natural frequency, respectively. The

maximum amplification of the vibration is obtained when equation 6.27 is a

-aximum. This occurs when

Sff/1 - 22  (6.29)
r fn -2

which is also known as the resonant frequency. For small damping f r f •

Since M w2 = K is the static stiffness, equation 6.27 can also be~n
expressee by

0_1 (6.30)

1 
+ 4 2 2

which represents the nondimensional amplitude c the vibration or the magnifi-

cation factor. It has the value of unity .- zero excitation frequency (f-0).

At the resonant frequency, the nondimensional vibration amplitude becomes

w 0 1 I1
F :t Q (6.31)

2; 1 2

In the above equation. Q is called the amplification factor or the quality

factor. This factor represents the ratio of the dynamic displacement at

resonance to the static displacement. Typical magnification factors are

illustrated in Figure 6.4 for a viscous damping ratio of 0.125 and for cri-

tical damping.

6-12
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Figure 6.4. Typical magnification factors for single degree-of-freedeam
system with viscous damping, including the halfs power
points

6.2.2.2 Half Power Point Method

The viscous damping ratio can be calculated from the response curve given

by equation 6.27, using the half power point method. The amplitude of the dis-

placement at resonance is given by

0 n2 2 (6.32)

The amplitude of the displacement at the half power, or three dB (decibel)

points is Ir/Z1 times the amplitude at resonance. Therefnre, when wo -= F
CM2
(Mn41-) is substituted back into equation 6.27, twq frequencies are ottained.

f fn (1-4) a f 2  f (1+) (6.33-1
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In equation 6.33, fI is the frequency of the lower half power point and f2 is

that of the higher half power point. The frequency bandwidth df at the half

vper points is

df - f2 - f= 2; fn (6.34)

and the viscous damping ratio is simply

= 2  (6.35)
n

This procedure for measuring the damping is illustrated in Figure 6.4, with

the magnification factor (MF) 2iven by equation 6.30. The method is based on

the fact that the area under the curve within the half power point bandwidth

is equal to half of the total area under the curve.

The problems with this method are illustrated jAn Figures 6.5 and 6.6 which

depict a single mode response of a Kevlar honeycomb panel to harmor.ic acoustic

excitation and a two-mode aircraft wing response, respectively. The tatter

figure corresponds to the vibration decay shown in aigure 6.3. The 'modal

response" in Figure 6.5 represents the true sinple degree-of-ftee-A response

whereas the "total response" is usually obrainee experimentally, re.']ecting

the contribution from the other modes. Errors could be obtained in the mea-

sured resonant frequency and the damping when the total response curve is used.

For reasonably close mode6 such as those illustrated in Figure 6.'%, the half

power points cannot be resolved.

6.2.2.3 Forced Vibration With Hysteretic D_&.4ing

The etkation of mot-on with hysteretic dawing, corresponding to

equation 6.2j with viscous damping. is

..w(t) 4 w(t) + Kw(t) = F Cos wt (6.36)
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where h/b is the hysteretic damping coefficient. The displacement can again

be expressed by equation 6.26, but wit' the zero-to-peak amplitude given by

W (6.37)

- 2)22 2 2 11/2

and the phase angle by

2

Tann n - (6.38)
Ln -W

where n is the loss factor or structural damping defined by

ii (6.39)

The phase angle remains finite at zero frequency with hysteretic damping but is

zero with viscous damping (equation 6.27). Equation 6.36 can also be expres-

sed in complex form by equation 6.24, but H(iw) is now given by

Il

H(iW) - 2 2- (6.40)
W +n in n )

The half power point method can also be used with hysteretic damping.

in this instance, the loss factor is

f2 fI dff f (6.41)

n n
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A~sJ,

r Q(6.42)
n

b.2-2.4 The Kennedv-?ancu Method

The derivation of this method is based on the assumption of hysteretic

damping. On using the complex form cf the equation of motion, determined by

comb 4ning equations 6.24 and 6.40, the complex displacement can be expressed by

w(t) F ei(wt - *) iwt (
w~~t f -H (2 _ 2)' + 2 4jj- Rw i&i e(.3

where

R(w) F( n 2  (6.44)

M (2W .)+ 41

and

2
n

() =- n(2) (6.45)

represent the real and imaginary parts of the displacement. Now

R(w) 2 + I() 2  - 1(w)F (6.46)
2 if 2 _ 2)2 2 41 Fn

M I (7n + n n
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or

R(w)2 + I(W) + r11 P2 (6.47)~= 224 (.7

2Mri w 2 4M n W

n

Equation 6.47 represents an equation of u circle, centered at 0, - F/2Mn w2)

on the complex plane with a diameter cqual to F/ (Hri ). This diater is

the modal diameter which ij equal to the zerc-to-peak amplitude at resonance.

The resonant frequency is located where the acove circle intersects the

complex axis, away from the origin. Another more practical method for estab-

lishing the resonant frequency, that also works well with multimodal response,

is to determine where the rate of change of arc length; s, along the circum-
ference -ith respect I.o the frequency (or frequency squared), is a xmum.

This condition is represented by the following equation

ds 1 (6.48)
d(w) M 1(2 2y n2 4

which has a masimum at the resonant frequency, where w.

The damping can be obtained from the half power points, %hich for a

single degree-of-freedom system, coincide with the maximum and minium val-

ues, respeCtively, of R(w), the real part of the complex displacement given by

equation 6.44. In practice the full circle is not always obtained. Conse-

quently, it is more practical to measure the angle 6 subtended at the modal

origin A by the arc of the circle between the resonant frequency, f n and

another frequency, f, on eithez side oi the resonant frequency. The loss

factor is defined by

n- Cot e f < f (6.49a)I
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or

2 (f - f n)
--. Cot 6 f>f (6.49b)

At the half power points 9 f 45°*

The above theory is also valid for viscous damping. Because of the

relationship in equation 6.29, the maximum response is obtained just before

the circle crosses the imaginary axis. The viscous damping ratio is extrac-

ted from the circular vector loop by means of the following relationships:

f -f
n Cot 0 f < f (6.50a)~nn

and

f fn Cot 1 f > f n (6.50b)

and the resonant frequency by the location on the circle where ds/df is a

maximn, the same as before.

6.2.2.5 Alication of the Kennedy-Pancu Method

A resolved components indicator is u3ually used with the K-P method to

measure the inphase and out-of-phase vibration response, at discrete frequency

increments, relative to the constant level harmonic force. The resulting

modal circles, obtained from these data when plotted on the complex plane, are

called vector loops.

Typical results obtained with the K-P method are illustrated in Fig-

ure 6.7. They represent the measured vibration response, in the fundamental
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mode of a stiffened Kevlar honeycomb panel, due to discrete frequency acoustic

excitation. The modulus of this vibration response is illustrated in Fig-

ure 6.5. The resonant frequency of 124.5 Hz was established in Figure 6.7a,

by measuring ds/df along the vector loop in Figure 6.7b. The vicous dam2ing

ratio was computed (Table 6.1) by taking the average of two damping ratios

calculated with angles 0 and 02 on either side of the resonance, as illustra-

ted in Figure 6.7b. The difference in the measured damping values indicates

that the resonant frequency may not have been physically located at its cor-

rect positiv on the vector loop, the main reason for selecting an angle on

both sides of the resonant frequency.

The origin of the modal response is located at point A in Figure 6.7b.

The distance OA represents the contribution from the other modes. The total

response is measured relative to the origin 0. The two curves in Figtxe 6,5
were obtained by taking the modulus of tin response, first relative to the ori-

gin at 0 (the total response), and then relatIve to A (the modal response).

The mde shapes are obtained by measuring the modal diameter at different

locations on the structure, taking account of the phase. Except .lose to

nodal lines, all the modal vectors at resonance are either in phase or

180 degrees out-of-phaoe.

TABLE 6.1. CALCULATION OF THE VISCOUS DAMPING RATIO
USING THE K-P METHOD

I C' . . .... .I 1
f ]! f-f °  COE Q

124. j 122 2.5 35.15 1. k2 o.0285

124.5 s28 3,5 46.08 ) 0.963 11.0271
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The K-P method can also be used to extract the resonant frequencies and

iarping values for naltimodal response such as illustrated in Figure 6.8.

These multimodal vector loops were obtained by taking the Fourier Transform

of the stZick pulse excited decay in Figure 6.3. The difference between the

modal and total response is illustrated more clearly in this figu z The

damping for both modes can still be extracted from these vector loops by mean;

of equations 6.45 or 6.46, but not from the modulus of these vector loops,

illustrated in Figure 6.6. Modes that have closer resonant frequencies than

those shown in Figure 6.8 way not be resolved by the basic K-P method.

The accuracy of the K-P method is degraded by the presence of both noise

in the asurement cit.cuit and distortion in the excitation waveform. The

resolved components indicator has some noise rejection capability on account

of the averaging time used in the Instrtmant. In most instances, filtering

is also required, subject to the limitations discussed in Section 6.2-1.4. A

high as possible signl-to-noise ratio should be used if accurate damping

msastraments are to : obtaIn%.ed.

Te main disadvantager cf the basic K-P method are that it is very tim

cons xing %u apply and very tedious to analyze by hand if Pany modet are pre-

seot, eaveciiy vhen aesuring ecde shapes siince =a.y measuremeet locations

I are involved. Tha rrsults are YkaaO sublect to huwncr error, esnccialiy

if the vectot 19os are dist-rted by spurious noIse. Then problem areaK

stiul=ated the development of curve fittn'g algoritls 16.12, 6.13, 6.141 which

can etract the modal parameters interactively while ainimizing the effects of

measurement clrcult noipe and the presence of cijcot noise (or distortion' In

the exc Itation signal (6451. This latter effect praduces the gretaest sca;-

ter in the test dRqa at the resonance peak, as iiluszared i.n iwre 6.9c.

1 6.3 DEUEV1 ENT OfTh M$ASLC MT4S

Th- need for reducing test tie has resulted i. tae developwent of alter-

nate srtez duroaion :ethds for efciting structures. These include the

broad- ban4 ranxoa excit'tio ft. -6}, the rapi4 sine sweep Oxcitattio 16.171 and

zee i¢eda s e he.ad ha er taip excitations 16.141. TIN* random excittfon has
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Figure 6.8. rrequency domain representation of the stick pulse
excIted decay in Figure 6.3

been around for a long time but was rime consuming to apply since the cross

correlation function had to be determined experimenrally, before the crossI

spectral density could be obtained by means of the Fourier Transform 16.181.

With the advent of the Fast Fourie.r Transform (Ffl) (6.19, 6.20], the auto

and cross spectral densities could be calculated directly and in a muchI

shorter rime than before. The Ffl and the recent advances in cc=puter tech-

nology, have revolutionized modal testing by pacing the Larder. oi da* reduc-

tion on the computer while simultaneously permitting an increase in the am ount

of data being processed. M ethods of extracting the dal frequencies and the

OUT OF
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6.3.1 Structural Response to Random Excitation

6.3.1.1 Fourier Transform Based Analysis

The autocorrelation function R y(T) of the response y(t) of a single

degree-of-freedom system excited by broad band random force x(t) is given

by (6.16, 6.18, 6.211

CT

Ryy() =  Lim T -  y(t) y(t+T) dt
y 2T  f

CM 3 os W L + Sin W (6.51)

2M2W3 1 d d)n "

where S is the corstant power spectral density of the excitation. The dis-xx

placement y(t), which is the same as the displacement w(t) in the previous

section, is used ..ere for convenience. The power spectral density S yy(W) of

the displacement is given by the Fourier Transform of the correlation funtion.

Therefore

Syy() J R(T) e - d

Sxx2
Sx = -IH(iw) S (6.52)

M2  -2)+ 2 2 21 xxM _W 2  + 4C 2 W w 2

I (Wn

where H(i-,)i is the modulus of equation 6.25. The cross correlation function

between the random force x(t) and the corresponding response y(t) of a single

degree-of-freedom system is given by [6.16, 6.211
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FT

Rxy( = L0 T j x(t) y(r+T) dt

2 xx -n
- e Sin wdT for T>O

-0 elsewhere (6.53)

and the cross spectral density S xy() by

Sx ( ) = - _ Rxy(T) e _ W d -L

xy 2r f.xy

- H(iu) Sxx (6.54)

The above spectra are double-sided spectra in which half of the energy

is contained in the negative frequencies. Single-sided, positive-frequency

cross and power spectral densities, denoted by Gxy () and G yy(W), respectively,

are used in practice. These single-sided spectra are related to the cor-

responding double-sided spectra by

G xy( j) = 2 S xy() (6.55)

Gyy(z) = 2 Sy (u) (6.56)

Also, the above spectra can be expressed in terms of the frequency, f, as

opposed to the circular frequency, w, by

0) 27 G xv (6.57

G() (0 2 )

_ _ . AA.
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On examining the above equations, it is seen that equations 6.51 Lnd 6.53

are very similar to equations 6.8 and 6.12, respectively, except for multipli-

cation by different constant terms. Thus, the free decay analysis procedures

can be used to extract modal parameters from these equations. Similarly,

equation 6.52 corresponds to the square of equation 6.27, enabling the damping

to be extracted by the half power point method, while equation 6.54 corresponds

to equation 6.24, enabling damping to be extracted by the K-P analysis.

The measurement of the cross and power spectral densities usually

requires a long record length in order to achieve the required statistical

accuracy. The percentage error in measuring the power spectral density with

a confidence level of 90 percent is given [6,16] in Table 6.2 as a function

of the statistical degrees-of-freedom,k. The relationships used in the

Blackman and Tuckey (B-T) analysis for establishing the power spectral density

analysis parameters, including the definition ot the statistical degrees-of-

freedom, are summarized in Table 6.3. The error in the power snectral density

is a function of the analysis bandwidth, Af, and the record le:.th, T (=NAt).

TABLE 6.2. ERROR IN MEASURING PSD FOR 90% CONFIDENCE LIMITS AS A
FUNCTION OF THE STATISTICAL DEGREES-OF-FREEDOM

Statistical Degrees-of-Freedom,
k ± Percent Error in PSD

10 65

20 48

30 40

40 35

50 32

100 23

200 16

400 11
1000 7
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TABLE 6.3. BLACKMAN AND TUCKEY AN'ALYSIS PAILAMETERS FOR DETERMINING
POWER SPECTRAL DENSITY (PSD)

N = total number of samples ia record

T = record length (seconds)

At = time spacing of samples (seconds)

Af = frequency resolution in PSD (Hz)

fm = highest frequency in PSD or half of the Nyqulst frpquency (Hz)

T = maximum correlation time delay (seconds)

m = maximum number of time delays

k = number of statistical degrees-of-freedom

Sampling rate = 2f

Record length = NAt

I I
f = -L or At = 1
m 2At 2f

m

f m =1 1
Af =...m 2mAt 2Tm

t fm m f 
N

At Af 2AfAt

k 2N 2(NAt) 2 Record length

M Max time delay
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The smaller the analysis bandwidth the greater the error, or the greater the

record length for the same error [6.22). This relationship is usually expressed

in the form

1Af T- 2 (6.59)

where the record length and analysis bandwidth are measured in seconds and

Hertz, respectively, and e is the plus or minus fractional error in the power

spectral density, which corresponds closely with the error in Table 6.2. On

using the relationships in Table 6.3, and equation 6.59, it follows that

NAt k 1
Af T - Af NAt = 2- = T 2 (6.60)

m e

A value for Af T of around 100 is typically used in power spectral density

analysis. This value represents 400 statistical degrees-of-freedom corres-

ponding to an error of ten to eleven percent at the ninety percent confidence

level. Even at this level of accuracy, a visible error, in the form of a

random ripple superimposed on the true power spectral density, is obtained

which may degrade the accuracy of any damping measurement. The above analysis

parameters are essentially the same for cross spectral analysis, except that

two channels of data, one for the force and the other for the response, need

to be recorded simultaneously.

It is necessary, when extracting damping data, to use an analysis band-

width that is sufficiently small to resolve the 3 dB points in the power

spectral density analysis or to provide the necessary number of frequency

points for establishing the vector loops in the cross spectral analysis. The

criteria for measuring the damping with sufficient accuracy is given by [6.17].

f nt-- > 1 (6.61)
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where f , , and r are the natural frequency, the viscous damping ratio andnm
the maximum correlation time delay, respectively. This relationship corres-

ponds to the requirement [6.23] in spectral analysis that the analysis band-

width, Af, has to be equal to or less than a quarter of the 3 dB bandwidth,

df. Therefore

Af < df (6,62)
-4

Equation 6.61 also translates into a requirement for the dynamic range to be

equal to or greater than 55 dB when determining the auto and cross correlation

functions.

6.3.1 2 The Fast Fourier Transform Analysis

The cross spectral density can also be obtained, by means of the FFT,

based on the following equation [6.20, 6.22, 6.24]

K

S() =Lim T4- I l = -- x(iw,T) y (iwT) (6.63)
XY Kj=T

where x (iw,T) and y (ic,T) represent the jth Fourier spectra of the force

x (t) and the response yi(t), respectively, measured over the same time seg-

ment J, each duration T; the asterisk denotes a complex conjugate; and the

summation is taken over K spectra in order to obtain convergence [6.24]. Thz

Fourier spectra x.(iw,,T) and y (iw,T) are calculated first by means of the

FFT using the relationships

1

x4(iw,T) = 2- x.(t) e dt (6.64)
J .1

0
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T-iwt

yj(iw,T) T- y(t) e dt (6.65)

0

for each successive segment of data, the complex conjugate is then taken of

the force spectrum and the resulting spectra substituted back into tquation

6.63.

The cross correlation function is obtained by taking the inverse Fourier

transform of equation 6.63, that is

R xy(T) f Sxy(W) e " ck& (6.66)

However some prior manipulation of the data is required 'b.19] before the

cross correlation function can be obtained from equation 6.66 by means of the

FFT analysis. Filtering errors such as discussed in Section 6.2.1.4 may also

be possible when taking the inverse FFT.

The power spectral density and the auto correlation function are obtainea

in the same way as the cross spectral density and the cross correlation func-

tion, except that the force x (t) and the subscript x in equations 6.63 and

6.66 are now replaced by the response yj(t) and the subscript y, respectively.

The relationships used in establishing the analysis parameters for the

FFT based spectral analysis are summarized in Table 6.4. Since the statisti-

cal degrees-of-freedom, k, are approximately equal to four times the number

of ensemble averages, K, in the FFT analysis, 100 ensemble averages are

required to achieve the same statistical accuracy as given by equation 6.59

for an error of 10 to 11 percent, for the same total record length

(T KLAt). The number of frequency points in the single sided FFT spectra

is equal to L12, not counting the zero frequency point. For accurate mea-

surement of the damping, the requirement in equation 6.62 must also be met by
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TABLE 6.4. FFT ANALYSIS PARAMETERS FOR DETERMiNING
POWER SPECTRAL DENSITY (PSD)

N = total number of samples in total record

T = duration of data block (sc..'onds)

L = number of samples in data block (256, 512, 1024, 2048, 2 )

At = time spacing of samples (seconds)

Af = frequency resolution in PSD :Hz)

f - highest frequency in PSP (Rz)m

K = number of ensemble averages

x-- maxim-im correlation time delay

k = number of statistical degrees-of-freedom

Sampling rate = 2f

Record length = NAt = K LAt

K = N/L

SAt (one half of a data block)

Af 2fml2f
L 2T

k--2(2T N T 1) -2 (2K-i)
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the FFT spectral analysis. The basis relationship between the B-T and the

FFT analyses is

f= (6.67)
2- m

where Af is the FFT analysis bandwidth in Hertz and .m is the correlation

function maximum time delay in seconds, in the B-T analysis.

6.3.1.3 The Band Selectable Fourier Analysis

The band selectable Fourier analysis (BSFA) .6.25], also known as the

zcom algorithm, provides-a means of increasing the frequency resolution of

both the cross and the power spectral densities, and therefore, of meeting

the resolution requirements of equation 6.62. This method concentrates the

L/2 frequency points over a limited frequency band, resulting in a much higher

frequency resolution, A'f. The number of ensemble averages, K, must be

increased to K' where

K' = K f/h'f (6.68)

to maintain the same statistical accuracy. Thus the increased resolution is

obtained at the expense of increased analysis time.

6.3.1.4 Single-Sided Fourier Transform of the Autocorrelation Function

If the single-sided Fourier transform is taken cf the autocorrelation

function of the r.sporse, RV. (T), with limits of integration from zero to

infinity, phase information is retained in the response specrum [6..61. -he

resulting respnnse spectrum S(i) is given by

S
Xi I = -- HUi) +-ELI (6.69)

n'

The characteristic response function S(i.)!S has properties simildr to thexx

frequency response function H(i) around the resonant frequency. This sothod
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was originally developed for use with rapid sine sweep testing since the auto

correlation fuaction of the impulse response function is the same as the auto

correlation function of a single degree-of-freedom system in equation 6.51

[6.26]. Therefore, this method is also applicable to the auto-orrelation

function obtained with random excitation. It is a powerful method for extrac-

ring modal parameters by means of the K-P analysis (Figure 6.9), without the

need for measuring the excitation. The excitation spectrum level has to be

reasonLily constant in the vicinity cf the modal response peaks to obtain

accurate damping data. The method can, for example, be used to measure the

structural response to Lurbulent boundary layer [6.27] without having to mea-

sure tle turbulent boundary layer power spectral density.

6.3.1.5 Exponential Weighting of the Correlation Functions

Weighting of the autocorrelation and cross correlation functions, with a

known exponential weighting function (6.28], before taking the Fourier trans-

form, provides a means of improving the quality of tLhe_ measured damping data

by, essentially, increasing the dynamic range. If, for example, the cross cor-

relation function in equation 6.53 is multiplied by an exponential function

en ,it becomes

2- S2 xx -n +i)
R xy( ) e Sin wd (6.70)

The damping has, in effect, been increased frnr= ; to The added damping

can be subtracted from the total damping to obtain the actual damping

, after the total damping is extracted from the cross spectral density by the

K-P analysis. Th± limitation of this method is that the actual damping must be

significantly greater than the error in the =easured total damping. Also, the

vector loops of close modes tend to coalesce if the total damping is made too

large.
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6.3.'.6 The Laplace Transform

The Laplace transform has some distinct advantages over the Fourier

transform in determining dynamic response of structures. For example, the

Laplace transform of the cross correiation function between the response at

two points on a structure, due to a force applied at another location, pro-

duces the frequency response function of the structure mrltiplied by the mode

shape function (6-291. Phase infEormaLion is retained between the two points

on the structure which enable mode shapes to be identified, in addition to

obtaining the resonant frequencies and damping ratios from the frequency

response function. The Laplace transform of the differential eojations of

motion for a multi-degree of freedom system has formed the basis for the

development of a digital modal analysis test system 16.14, 6.30, 6.31] for

structures.

The basic characteristics of the Laplace transform used in studying

structural response [6.30] can be illustrated by considering the equation of

motion for a single degree-of-freedom system given by

My(t) + Cy(t) + Ky(t) = x(t) (6.71)

where y(t) is the response of the system to a random (or transient) force

x(t) and M, C and K are the mass, damping coefficient and stiffness, respec-

tively, of the system. With all initial conditions assumed to be zero, the

Laplace transform representation of equation 6.71 is

B(s) y(s) - x(s) (6.72)

where

B(s) = s Cs + K (6.73)

and s is the complex Laplace variable, while y(s' and x(s) are the Lanlace

transforms of y(t) and x(:), respectively. Alternatively,
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v(s) = 11 s) x(s) (6.74)

where H(s) is the transfer func-:ion given by

H(s) 2 C K (6.75)
s +-s+-

The transfer function can also be expressed in the following form

= a + a* (6.76)
s-p s-p*

where

a =(6.77)
't (1---:)

n

respectively. 're strsk denotes Ja co=-ex con',ugaite. The tem , a-. revre-.

sents a Co= ex residue andn is -h roo or -he pole of -he. transfer u-nc-

tion. h-~n the sing'e -eree-or-ftreedo s-st- Is srbcriticaLJI da ed, he

poles are complex n er and occur iM.l-px conjuate pairs. A palt of
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such poles is illustrated [6.30] in Figure 6.10, occurring at s = -1 ±i5. The

Fourier transform is a special 'ase of the Laplace transform as iilustrated

in Figure 6.10. The inverse Laplace transform of the transfer function

(equation 6.76) produces the impulse response function of the single degree-

of-freedom system.

The natural frequency and the viscous damping ratio are obtained from

I Ic2 1/2

fn = -- + (w)2} (6.78)

and

= (6.79)

respectively.

I0 0. ,0

-05 0 0 05

FOURIER
I ANSFORM

U
Figure 6.10. Real part of a transfer

function with poles at
s =-1 +t5
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In the case of multimodal response, equation 6.71 is replaced by a matrix

equation. The transfer matrix [H(s)] is obtained (6.30] by inverting the sys-

tem matrix tB(s)]. Therefore, an n-dimensional system,

h.l(s) . . . h, (S)

[H(s)] f hj (s) . (6.80)

Lhn(s) . . h nn(S)

where hij(s) is the i,Jth complex transfer function of the system. The

above transfer matrix contains all of the information necessary to completely

specify the dynamic response of the structure [6.30]. Furthermore, the mass,

the stiffness and the damping matrices can be recovered once the transfer

matrix has been determined. The structural response obtained by this means

can be presented in the form of vector loops that have been enhanced by means

of a curve fitting algorithm to minimize signal to noise errors. The resolu-

tion requirements for accurate damping measurements are the same as those

given by equation 6.62.

6.3.1.7 The Random Decrement Method

The random decrement or randomdec method (6.32, 6.33] provides another

means of extracting modal data from the time history of the response. It

basically involves obtaining a digitized time history of the response, such

as illustrated in Figure 6.11, to random excitation. A free vibration decay

type randomdec signature is obtained by first shifting or shifting and

inverting the time history in the manner illustrated in Figures lla and b,

respuctively. This results in a number of ensembles that are then averaged.

The frequency and damping data are ext'acted by the log decrement method or by

means of the least squares curve fit method for a one mode, two mode (6.34] or

multimodal response, using one measurement location at-a-time. Noise rejec-

tion is obtained through ensemble averaging. Generally a large number of
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ensemble averages are required to achieve tue necessary accuracy for

measuring the damping.

6.3.1.8 Ibrahim Time Domain Method

The randomdec method has been extended [6.35] to permit the analysis of

mulimodal response based on simultaneous use of muItiple measurement loca-

tions. The basis of the approach [6.36] can be outlined b- considering the

equation of motion for a multi-degree-of-freedom rystem that is eycited by

random force and given by

[MI {y(t)} + [C] {y(t)} + [K] {y(t)} {x(t)} (6.81)

where [M], CI] and [K] are the mass, damping and stiffness matrices, respec-

tively, and {y(t)} and {x(t)} are the random response and force vectors,

respectively. The time t in the above equation is now replaced by ti + r

where the t.'s are selected according to the triggering method used in start-

ing the randomdec computations. Each ensemble is represented by a value of

j, where j = 1,2,3,..., up to a. total of N ensembles. After summing and

avPraging these ensembles, the resulting equation becomes

[M] {Y(i)) + (C] {Y(r)} + [K] {Y(r)}

N

- > {x(tj + 1)) (6.82)

j=1

The t.'s were selected in a manner such that the averaged response {Y(T)}J
remains finite while the right hand term in equation 6.72 goes to zero, since

the random force is assumed to be stationary. Equation 6.82 now becomes

[M) {Y(T)} + [C] {Y(r)} + [K] {Y(t)} = 0 (6.83)
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which represents the characteristic equation for multimodal free vibration

response. This characteristic equation Is then expressed in the form of an

elgenvalue problem which includes the inversion of a matrix developed from

measured response data. This type of inversion may introduce errors into the

analysis since it can be shown that the fractional error in the inverse of a

number containing spurious no-se, is equal to minus the inverse of the dynamic

range. it is therefore suspected that this method may be subjected to the

same 55 .B dynamic range requirement for the randomdec signatures as dis-

cussed in Section 6.3.1.1.

It is stated in Reference [6.36] that the force does not have to be

white noise or broad band random. However, it can be shown theoretically

that the effect of the forcing function shape is already included in the

response Yt,. The filter effect in Figure 6.2 was actually obtained by

means of a band limited rapid sine sweep excitation. The result is basically

the same whether the response of the structure to a broad band excitation is

filtered after the application of the excitation or if filtered excitation is

applied to the structure. Therefore, it is concluded that for accurate mea-

surement of the damping, the force spectrum should be reasonably constant over

the region encompassing the structural resonant peaks.

6.3.2 Fourier and Laplace Analysis of Transient Response

6.3.2.1 Rapid Sine Sweep Excitation Method

The rapid sine or frequency sweep technique was developed [6.171 for

rapid measurement of strucLural response while maintaining control over the

excitation force. The constant level sinusoidal force x(t) is varied very

rapidly but linearly with frequency (Figure 6.i2a) between an initial fre-

quency f and a final frequency f.. This form of excitation represents a

controlled impulse with arFroximately an equa] energy distribution with fre-

quency tetween the above frequency limits (Figure 6.12b). The deterministic

excitaton is given by the relationship.

x(t) = x Sin (at2 + bt) 0.t-T (6.84)[ 6-41
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(b) SPECTRUM

Figure 6.12. Typical rapid sine sweep
waveform and spectrum

where

a =i(f 2 -fI)/

(6.859)

b = 27 f

The frequency response function (equation 6.25) of a single degree-of-

freedom system excited by an impulsive force x(t), such as the rapie sine

sweep, is sim:pLy

Ha(w) (() 6.86)
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where x(iw) and y(iw) are the Fourier transform of the force x(t) and the

response y(t), respectively, given by

x(i) = _ x(t) e -i t dt (6.87)2r "

y(iW) = 2- y(t) e- dt (6.88)

The modal frequency and damping can be extracted from equation 6.86 by means

of the K-P analysis. The process is also valid for multimodal response.

The vector loops obtained by means of equation 6.86 are usually distorted

by the presence of spurious noise. The signal to noise ratio (S/N) can be

improved by ensemble averiging of successive test data. If the spurious noise

is random gaussian then the improvement that caa be achieved in the signal to

noise ratio is given by the relationship [6.371

is) = A( (6.89)
uN Improved

where K is the number of ensemble averages. If the noise is not gaussian the

number of averages should be increased by 3.5 times the number given by equa-

inn 6.89. The signal to noise ratio can also be improved by first obtaining

the autocorrelation function, R y(T), of the response y(t) and then taking

the single sided Fourier transform of the autocorrelation function, as dis-

cussed in Section 6.3.1.4. This procedure was used in obtaining the funda-

mental mode response of a Kevlar honeycomb panel to rapid sine sweep acoustic

excitation in Figure 6.9. A least squares curve fit analysis was still neces-

sary to extrart the modal paramcter- since some spurious noi!.e effects remained.
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There is also a resolution problem with close modes [6.381 with the

[ resolution limits defired approximately by the criterion

< 0.19 + 0.0031 (DRY 20<DR<60 (6.90)
JAfI

where DR is the dynamic range measured in dB, fn and n are the natural

frequency and viecous damping ratio of the longest decaying mode, respectively,

and Li is the difference between the resonant fequencies of the two close

modes. The term on the right of equation 6.90 becomes 0.37 for the 55 dB

dynamic range criterion in equation 6.61, that is also required for accurate

damping measurement. A c-mrehensive summary of the rapid sine sweep testing

technique and other potential problem areas is given in Reference [6.381.

6.3.2.2 Impedance Head Hammer Tap Method

The impedance head hammer tap t st method was developed [6.30, 6.311 for

use in conjunction with the Laplace transform based digital modal analysis

system discussed in Section 6.3.1.6. This method of testing provides a rim-

ple and rapid means of obtaining meastred resonant frequency and damping data

from a broad range cf structures, Lince special test fixtures are generally

not required. Mode shapes, such as those illustrated in Figure 6.13 for an

integrally stiffened graphite/epoxy panel [6.391, require some added effort

in defining the tap locatioas on the structure and storing their coordinates

in the computer. Also, a number of hammer taps are, generally, used per tap

location in order to improve the signal to noise ratio (see equation 6.89).

Ti zoo- algorithm can be used to obtain the required frequency resolution.

The hammer tap represents an "uncontrolled" impulse. Consequently, the

hammer contains a force gage to measure the impulse force. The response of

the structure is measured either by an accelerometer or a noncontacting dis-

placement transducer [6.391 located on the structure where significant

response is obtained friom all of the modes of interest. The force and the

response are measured simultaneously for each tap. The upper frequency limit
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Figure 6.13. Typical measured mode shapes
cf an integrally stiffened
graphite/epoxy panel

of energy imparted to the structure depends on the hardness [6.401 of the

hammer tip (Figure 6.14) and the dynamic characteristics of the structure

16.411. The highest frequency limit is obtained with a hard ha er tip

impacting on a very stiff structure. For example, the hammer force spectrum

has a much lower energy content when an integrally stiffened graphite/epoxy

panel is impacted at the panel center (Figure 6.15) than when it is impacted

over th. stiffener flange.

An indication as to the accuracy of the measured response data can be

obtained by computing the coherence function y defined by [6.221

G (f)11
y2 0< <I (6.91)

Cxx (f) G (f)
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Figure 6.14. Force spectra produced with
various hammer tip materials
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Figure 6.15. Hiamer force spectra from tapping at panel

center and over stiffener flange
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where Gy(f) is the cross spectral density between the force x(t) and the
weeGxy (

response y(t) and, Gx (f) and G (f) are the power spectral densities of the

force and the response, respectively. The closer the coherence function is

to unity the more accurate the response data. Typical coherence functions

obtained with a noncontacting displacement transducer and an accelerometer,

with impedance head hammer taps applied over the stiffener flange of an inte-

grolly stiffened graphite/epoxy panel, are illustrated in Figure 6.16. The

accelerometer provides better data at higher frequencies whereas the displace-

ment transducer is very accurate down to dc. The coherence obtained with the

displacement transducer, by tapping at the center of the panel, started to

deteriorate at 200 Hz. In spite of this deterioration, it was possible to

measure the mode shapes op cao a frequency just below 500 1z (Figure 6.13).

The corresponding damping data shown in Figure 6.17, however, exhibited a rela-

tively large scatter at the higher frequencies. Generally, the same dynamic

range requirements as discussed in Sectioa 6.3.1.1 are also required for this

test method, to obtain accurate damping measurements. The dynamic range can-

not be increased by increasing the energy level of the impact since damage

could Le produced in the structure. It is also difficult to identify the

modes when the damping of the structure is increased significantly such as

obtained when a panel is approaching buckling [6.421. The higher order panel

modes of complex structures, such as the moie at 397.8 Hz in Figure 6.13, can

also reach the data point limit in soze of the current analysis systems.

Seventy two tap locations were used in deriving the mode shapes in Figure 6.13.

This test method is ve-y useful in determining the structural response modes

primarily in the lower frequency range. Other forms of excitation that pro-

vide a controlled force over a wider frequency range, need to be used for

investigating structural response at higher frequencies.

6.3.3 Nonlinear Response and Electrodynamic Shakers

All of the methods discussed in Section 6.3 are based on the assumption

of linear structural response. Consequently, significant errors in the resonant

frequencies and damping rarios can be obtained when the structural response is

highly nonlinear [6.421. ihis result is supported by experimental evidence
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Figure 6.17. Measured viscous damping ratio for integrally stiffened
graphite/epoxy panels

in References 6.39 and 6.44. The Fourier and Laplace transforms utilize an

averaging process with respect to time. Consequently, nonlinear effects,

which are a function of amplitude, are smeared by this averaging process as

illustrated [6.39] in Figure 6.18. The integrally stiffened graphite/epoxy

panel exhibited a stiffening spring type nonlinear behavior at the higher

excitation levels characteristic of large amplitude panel response. The half

power point "damping" me4 surement obtained from the nonlinear vibration spectra

are meaningless. No correlation was obtained in the least squares type curve

fit of dynaric strain response data to theory when such half power point

"damping" valueS were used [6.44] in the correlation. Ocher evidence [6.39]

suggests that dampirg values measured in the linear response region at low

excitation levels are als- applicable at the large panel response amplitudes.

Fric-ion dampng, wI.ich may in-crease the damping with amplitude, was nor pre-

tznt in the these panels since the panels were fabricated with cocured

integral stifrfeners.
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Fig-re 6. :S. Typical linear and nonlinear strain power spectral

densities for an integrally stiffened graphite/

epoxy panel subjected to randot acoustic loading

The sine dwell is considered to be the best method for measuring nonlinear

structural response since changes in the resonant frequencies of the anes with

force level or vibration amplitude can be readily detected. The damping can

be measured from the free decay generated by the quick stop method. The decay

rate will va-: as a function of amplitude if nonlinear damping is encountered.

This meL:.od is applied on a mode by mode basis and is, therefore, very time

consuming.

If electrodynamic shakers are used to excite the structure, the damping

of the structure may be increased by the back aff within the shaker 16.381.

Quick release couplings Souid be used when making free decay type damping

measurements with electrodynamic shakers. Aiternatively, the back D? can be

minimized by making the electrodynamic shaker esseniisl- a cons-ant current

devicc. This change requires the us;eo t nuon:ecling saddle within the

shaker together with a high tmedance pwe. a=piltier.
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The Galileo Spacecraft Development Test Model [6.451 provided an oppor-

tunity to evaluate most of the current vibration data analysis methods [6.46]

as part of the modal survey -ffort conducted to verify the analytical dynamic

model of the spacecraft. The spacecraft has a three-dimensional vibration

response and a high modal density, with approximately thirty modes concen-

trated in the frequency region beLjeen 10 and 45 Hz. The vibration response

of the spacecraft is basically nonlinear [6.47). One electrodynamic shaker

was used in the majority of the tests, 3 and 4 shakers were used in the two

multi-shaker random tests and up to 8 shakers were used in the sine dwell

tests. In general, all of the significant modes were identified by these

methods. The variation in each of the modal frequencies, as measured by the

vavious methods, fell within a 10 percent scatter band. The measured damping,

however, exhibited a considerably greater scatter. These test methods are

discussed in more detail in References [6.461 to 16.501.

6.4 CORRECTION OF SMOOTHING ERRORS IN DAMPING OBTAINED FROM SPECTRAL ANALYSIS

6.4.1 Introduction

The use of the periodic Fourier transform, to analyze nonperiodic random

and transient vibration data, introduces leakage into the resulting structural

response spectra. This leakage takes the form of spurious side lobes [6.51]

which have the appearance of and may be mistaken for actual modes, producing

significant errors when multimodal curve fitting algortthms are used to

extract the modal parameters. These spurious side lobes can be suppressed

by the use of smoothing functions at the expense of increasing the resolution

(truncation [6.51] or bias [6.22]) error. The resolution error reduces the

level of the spectral response peaks at resonance while increasing the magni-

tude of the damping extracted from these response peaks. Since the smoothing

function and data analysis parameters, such as the analysis bandwidth, are

-iways preselected in any data analysis, their effect on the single ,'egree-

of-freedom system can be established theoretically and correction cuives

developed to compensate for their effect on the extracted modal damping. This
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appioach has been used for the rectangular, Bartlett and Hanning smoothing

(or weighting functions [6.18]) in References [6.51], (6.52] and [6.15],

respectively (see Figure 6.19).

Generally, a low resolution error is desirable for measuring modal

damping. The unsmoothed data, synonymous with rectangular smoothing, pro-

duces the lowest resolution error, but also the highest side lobes. Hanning

smoothing has relatively high side lobe suppre.sion capability while produc-

ing a slightly larger resolution error. As a consequence, Hanning smoothing

is often used as a compromise in modal analysic. The above trend is continued

with Bartlett smoothing.

1.0 DXr

0.5 I

-1.0 3 1.0 iT

WEIGHTING FUNCTIONS

Qrf1-f)Ir10 1 - - - RECTANGULAR

, -- HANING
i lBARTLETT

I l
I t

I l

-1.0 -0.5 0.0 0.5 1.0 - 1.5 ,2. 0 2.5 -3. 0

' *

\ /

%'W

SPECTRAL WINDOWS

Figure 6.19. Rectangular, Hanning and
Bartlett smoothing or
weighting functions and

the corresponding
spectral windows
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In general, the effect of the smoothing on the resonant vibration response

spetrum is a function of the analysis bandwidth, the resonant frequency and

th- damping ratio. Therefore, the effect of smoothing cannot be compensated

for by a constant factor, such as derived from the spertral analysis of a

discrete frequency signal, before the analysis is performed since tne modal

parameters are usually not known beforehand. In the problem of extracting

known discrete frequencies from within random background noise, the suppres-

sion of the side lobes is of paramount importance while the resolution band-

width is much less important. The reverse is true for modal analysis.

In order to obtain accurate damping data, the effects of smoothing on the

modal parameters must be understood and means of correcting for their effect

established. The limitation imposed on the use of curve fit algorithms by the

smoothing must also be established since the data extracted often include

parameters other than the resonant frequencies and damping ratios. The

purpose in this section is to address these problem areas for the three

weighting functions discussed above when used with the Blackman and Tuckey

[6.181 spectral analyses. The errors introduced by the FFT spectral analyses

are dependent on the way the smoothing is applied within the analysis compu-

ter. The baqic theory has been developed [6.531 but remains to be verified

against test data.

6.4.2 Basic Smoothing Theory

The basic smoothing theory [6.51] is applicable to the spectral analysis

of structural response to both random and transient excitation. The basic

approach involves calculating the cross correlation function before taking

the Fourier transform. The cross correlation function in practice is of

finite length, terminated after a maximum time delay 1m. The expression for

the true cross spectral density in equation 6.54 is now replaced by an esti-

mated cross spectral density P xv(), at circular frequency w1I that is given

by

1 T-ill

xy(il = - D(:) R y() e dz (6.92)
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where D(T) is the smoothing or weighting function given by

D(,) = I for - m m

(6.93)

= 0 elsewhere

for rectangular smoothing,

D(T) = --'( + Cos 2-8 for- m<m

(6.94)

= 0 elsewhere

for Hanning smoothing, and

D(-[) - ifr - T <T<T
Tm m m

(6.95)

- 0 elsewhere

for Bartlett smoothing.

The cross correlation function is also given by the inverse Fourier trans-

form of the true cross spectra (equation 6.66). On substituting this expression

for the correlation function into equation 6.92, the estimated cross spectral

density becomes

Pxy( )Q (L1 -u,) Sxy(w) dw (6.96)
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where the spectral window Q(wi-w) is

Q(Wl-W ) = m D(, e) dT (6.97)

m

The weighting functions in equations 6.93 through 6.95 and the corresponding

spectral windows are illustrated in Figure 6.19. The basic theory is equally

applicable to the estimated power spectral density P xx(W ) by simply replacing

the cross correlation function R xy() ia equation 6.96 with the auto correla-

tion function R yy(T). The estimated Fourier sprctrum y(iwl,T) of the finite

response y(t) of a single degree-of-freedom system to an impulse is given by

y(iwi,T) = 00 f D(t) e dt y(iw) dw
0

(6.98)

J Q( I-w) y(iw) 
dw

where the duration of the response is T, y(iw) is the true Fourier :pectrum,

the smoothing function D(t) is the same as D(T) in equations 6.93 through 6.95

and the spectral window is

I T -i( l1 u~

Q _W)= D(t) e dt (6.99)

The lower limit of the integral in equation (6.97) is also zero when applied

to the cross spectral density, since the cross correlation function exists

only in positive time (equation 6.53). The same i, also true for the single

si~ad Fourier transform of the autocorrelation function. Therefore, all

Fourier transform based spectral analyses are prone to smoothing error.
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I
The expression for the estimated cross spectral density for a single

degree-of-freedc- system that is excited by broad band random noise becomes

S f Q(wI-w)xxj dw (6.100)

(w2_2 + 2iCw)

and the estimated power spectral density P (c. )
y

S fo Q(;,-w)

Syy -1 2=(w2 ') .2 222 d (6.101)M _12 + 44 ,WnW

Also, the estimated frequency response function H(ia,T) obtained from transient

analysis (see equation 6.86) is now

y(iwT) W(t) h(t) e dt (6.102)

x ( iCWU) J=

where h(t) is the impulse function of the single degree-of-freedom system.

Equation 6.100 and 6.102 can be solved by contour integration and by

direct integration, respectively, and produce identical results fir the esti-

otatzd frequency response function. An approximate sclution can be obtained

to equation 6.101 from the imaginary part [6.531 of equation 6 100, or the

estimated power spectral density can be obtained by direct integration of

equation 6.92, with subscript x replaced by y. Sn dividing the estimated

cross and power spectral densities by the corresponding true cross and power

spectral densities, respectively, the same r-solution ezror is obtained ;6.151

at resonance. The normalized resolution error for the resonance peaks is
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P (Wa) P (W)
n_ ___n_ I -C (0+0.5c sine) (6.103a)

S () S (wj
xy n yy n

for rectangular smoothing [6.511

=-0.25a2 (1+-acosB) 1 I+ 2 1

(i+8) 2 J- 2' (r-8)2 2 _2 a2

.-0.25cae CLsiao 1 i 8Ir + 2B2 (6.103b)-.5esig2 a2 2 2 82 2

101-5) + 2 0+0 + a + a

+0.5 2ai2 + wZ (1-e-)+

for Hanning smoothing [6.151 and

e- (6. 103c)

for Bartlett smoothing [6.52], where

(6. 100

-B 2 w

-Q= (%Z

n m

The normalized estimated spectra at resonance are illustrated in Figure 6.20

for the three smoothing functions. It is seen that no error is obtained in

the unsmGoothed spectra when the criterion in equation 6.61 is satisfied. This

condition applies equally to FFT analysis on using equation 6.67 with the

relationship in equation 6.61. The error remains finite for the other smooth-

Ing functions.
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Figure 6.20. Smoothing error in the
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cross spectral peaks
at resonance

The effect of Hanning smoozhing on the norm4lized cross and power spectral

densities of a single degree of freedom system are illustrated [6.23] in

Figures 6.21 and 6.22 respectively.

6.4.3 Methods f or Correcting Smoothing Affected DaMing

The resonant frequency, of smoothing affected spectra, is extracted by the

same method as for the K-F analysis, namely where the rate of change of arc

length with frequency (ds/df) is a maximum (see Figure 6.21). However, the

extraction of the damping is mmore involved since special curves have to be
I ds

developed for this purpose. Originally [6.511 the parameter - calculated

1S

at resonance, forzFed the basis for such curves where p is the radius of curva-

ture of the smoothed vector loop at resnnance and ds/dn is also measured at
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resonance. This parameter produced curves that became asymptotic and

consequently impractical to us. Instead, the estimated viscous damping ratio

r, given by

'2 ds \ (6.105)

was used to develrp the correction curves [6.15, 6.231. The above expression

reduces to the correct damping for unsmoothed spectra given by equation 6 .50a

since near resonance
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Cor I - 2p (6.106)

--0 s

and

f - fn - f d,_ (6.107)

n n

If the cross spectral density in equation 6.69 is expressed by

P XY(W) = X(a) + iY(w) (6.108)

then, by using the same approach as in Reference [6.51], it is shown in Refer-

ence [6.15] th3t at resonance

, =2 daw) d ( (6.109)n" V %o_

The expressions for 4 obtained with rectangular, Hanning and Bartlett

smoothing are

..1 .(6.110)

- -+0l + a + 0.5a-2 )

2 - 8y2 _1 (-2-- 2 - 8f2 1 4y

1
2 2 + ) 2 2  + Sin 8)1

I (- 1 -yu1) 32y ( + 4 y )1(1 L _2- T_ y 32+y) 8(

i + 6y2
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and

1- + e (

1 i( +i A(6.112)
respectively, using the small damping assumptions. In the above equations

is the correct viscous damping ratio, a and B are given by equation 6.104 and

.Y = fnTmC (6.113)

The correction curves derived from equations 6.110 through 6.112 are

illustrated in Figures 6.22 through 6.24, respectively, as a function of the

analysis bandwidth Af ( = I/(2z )) divided by the resonant frequency. The

correct damping can also be extracted from equations 6.21 through 6.23 by

means of an iteration procedure !6.231. Similar correction curves based on

the estimated 3 dB d.mping from the correspondirg smoothed power spectral

densities are illustrated in Figures 6.25 to 6.27. These curves were

obtained by numerical means from the smoothed power spectral densities.

6.4.4 Effect of Smoothing on Curve Fitting
The ability of current curve fitting algorithms to fit many modes simul-

taneously is advantageous for speeding up the data analysis, but may produce

erroneous results when smoothing errors are present in the vector loops. The

effect of smoothing on curve fitting of vector loops can be evaluated by con-

sidering the variati- n of the local radius of curvature along the vector

loops near rescnanc with normalized frequency, as illustrated in Figure 6.28a.

The radius does vary significantly. Furthermore, equations 6.50a and b, used in

extracting the model damping from circular vector loops, are not valid in the

presence of smoothing (see equations 6.110 to 6.112). The variacion in the

raLe of change of arc length with normalized frequency, illustrated in Fig-

ure 6.28b as a function of the normalized frequency, compensates for the
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change in curvature when used in equation 6.JO5. This compensating effect is

illustrated in Figure 6.28c where the variation in the measured (estimated)

damping * is shown as a function of the frequeozcy increment df/f n between two
equidistant frequency points on either side of resonance. A good estimate of

* can be obtained with rectangular smoothing using the curve between the two

3 dB points. The estimated damping ratio '* for the other smoothing functions
can only be establishea by the use of the curve around resonance. The correct

value for & is obtained at dfif n = 0 in F-gure 6.28c.
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The amount of the unsmoothed vector loop that can be cluded in the

curve fit depends on how closely the analysis meets the criteria in equa-

tion 6.61 or 6.62. For the -rector loop used to derive the curves in Fig-

ure 6.28, the parameter f 0.3 is obviously too small a value. For the
n m

curve fit in Figure 6.9c, the paranterer f T t is equal to 0.779, based both on
n P.,

the data in Table 6.1 and the value for i of 0.225 in Figure 6.9b. This value

for T corresponded to the point where the autocorrelarion function disappeared

into the noise. Replacing the correlation function beyond this point with

added zeros may improve the signal to noise ratio slightly, but will not change

the smoothing effect. The curve fit in Reference [6.151 ext::acted the follow-

ing parameters from the noise polluted vector loop in Figure 6.9c:

= 0.0313

and

f 124.5 Hz
n

Even with these values, the parameter f nTm is equal to 0.877. indicating then '

presence of a smoothing error. Therefore, using the above vilue for C* and

Afn = 1/(2 x 0.225 x 124.5) = 0.0179 in Figure 6.22, the corrected viscousn
damping ratio of t = 0.028 is obtained. This damping ratio is in good agree-

ment with that in Table 6.1, measured by the basic K-P method.

In conclusion, it is recommended that only the unsmoothed data should be

used in the curve fit and that the criteria ir equaLiOns 6.61 or 6.62 must be

met for accurate damping measurement. A 5 percent error in the vector loop

diameter will result if the criterion is relaxed to

- 0.05 (6.114)
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This relaxed criterion is also expected to provide reasonable estimates of the

damping provided the damping values are corrected for the smoothing effect.

For even lower values of fnT i than in equation 6.114, the curve fit should be

applied on a mode-by-mode basis using the curve only between the 3 dB points

and again correcting the extracted damping ratio for smoothing error.

A good procedure for determining whether smoothing errors are present in

the respons spet'.c is to obtain an unsmoothed spectrum such as illustrated

in Figure 6.29b. Then obtain a Hanning smoothed spectrum to identify the

actual modes (Figure 6.29c). Finally obtain a third unsmoothed spectrum,

doubling the resolution. If the spectral peaks are of the same magnitude for

the two unsmoothed spectra, then the smoothing error will not be present in

the data. If the resonant peaks increase in magnitude when the resolution is

increased, then a smoothing error is present in the original unsmoothed spec-

trum and, possibly, in the higher resolution spectrum. Continuation of this

process is limited by the reduction in the frequency range encountered when

the resolution is increased.

6.4.5 Evaluation of the Smoothing Theory

The accuracy of the previously developed methods for correcting smoothing

affected damping was evaluated [6.23I by comparing the results obtained from a

stick pulse excited free decay by means of the exponential and least squares

curve fit methods, with those obtained from the smoothed Fourier spectra of the

decay. The single mode aircraft wing decay is illustrated in Figure 6.30.

The Fourier spectra obtained with I second and 5 seconds of the free decay

are illustrated in Figures 6.31 and 6.32 for the unsmoothed and the Bartlett

smoothed spectra, respectively. The spurious side lobes are visible for the

uosmoothed spectra in Figure 6.31, The oval shape of the vector loops in

Figure 6.31 is typical of the smoothing effect. This oval shape also intro-

duces errors when using multimodel curve fitting techniques. The vector

loops can be restored to circles by the use of ex- -,ntial weighting as illus-

trated in Figure 6.33.
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The damping data obtained by the various methods are summarized in

e .Ve actual viscous damping ratio of the mode is around 0.038. The

raw damping extracted from the smoothing affected spectra exceed the actual

damping by significant amounts. The corrected damping, obtained fcom the

unsmoothed (or ractangular smoothed) and Harming smoothed spectra, are in rea-

sonable agreement with the actual damping. The corrected damping is slightly

higher from the Bartlett smoothed spectra. The correcticn method for the

unsmoothed spectr provided the best result for thie une second decay time. Also,

curve fitting between the 3 dB points on the unsmoothed vector loop appeared to

be more accurate than using the data arouud resonance [6.231 due probably to the

presence of some noise in the free decay. This result is supported by the

data in Figure 6.28.

The unsmoothed spectra, when used in conjunction with the method for cor-

recting the damping described in the previous section and a single mode par-

tial curve fit, offers the best method for extracting reasonably accurate

damping data from smoothing affected spectra. The smoothing error can, gen-

erally, be expected to occur in the spectral analysis of structural response

modes with low damping.
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SECTION 7

DAMPING IN STRUCTURAL MATERIALS AND STRUCTURES

7.1 INTRODUCTION

The vibration amplitude at resonance is limited only by the damping in

the structure. Coasequently, prior knowledge of the damping levels within

the various aerospace structural materials and in the lightweight aerospace

structures-made from these materials, would be a great benefit to the design

process. Lightweight structures are emphasized since viscoelastic damping

can have the greatest beneficial impact on the design of these structurts.

rhe purpose here is to review briefly both the damping mechanisms (Section 7..:)

and the damping levels (Section 7.3) present in these scructureq. Because o!

the increased use ol structures in space, the differences between the damping

in the earth and space environments need to be discussed.

In this document, damping is presented in terms of the viscous damping

ratio 4. The viscous damping ratio can be converted to loss factor or

structural damping, denoted by 11, by means of equation 7.1.

n 24 (7.1)

7.2 BASIC DAMPING MECHANISMS IN STRUCTURES

Most of the damping mechanisms [7.11 are present in stiffened panel type

aircraft structures. Consequently, these types of structures represent a

good starting point for the review. The damping in these lightweight struc-

tures is due to energy loss through acou3tic radiation [7.2, 7.31, transmis-

sion of the vibration to the surrounding structure [7.41, gas pumping [7.51

and joint friction [7.6, 7.7! at the fastener lines, and internal material

damping [7.81. Obviously, acoustic radiation and gas pumping loss mechanisms

do not occur Jn the space envirom;r.e.. Unmanned spacecraft and satellites

I-



are, generally, constructed with a central structure that supports a number

of bolted-on appendages, some of them deployable in space. Consequently, the

major source of damping in these structures is due to friction [7.91 gen-

erally within the bolted joints, apart from any added active or passive

damping. The vibration of the appendages could also produce some acoustic

radiation damping during ground vibration tests [7.91 and iaunch.

7.2.1 Acoustic Radiation

Acoustic radiation from stiffened aircraft panel type structures, has

been investigated for more than two decades and has, consequently, been the

subject of very many papers. The simplest of the theories, for predicting

radiation damping, is given in Reference [7.3] for both simply supported and

clamped single panels mounted in an infinite baffle. Based on this work,

acoustic radiation damping was, generally, considered to be very small in

riveted skin-stiffener type aircraft panels [7.3].

The acoustic radiation damping is proportional to panel area [7.3].

Consequently, if the panels are made large enough, acoustic radiation shculd

become :he dominant damping mechanism. This approach was used in a carefully

designed experimental study [7.10] in which stiffened graphite/epoxy and

Kevlar honeycomb panels were mounted singly in a very large baffle test

facility [7.11). Each panel was installed in a test frarne with countersunk

fasteners. Jointing compound was used to minimize the effect of gas pumping.

The test frame, containing a honeycomb panel, was mounted in the test aper-

ture within the baffle in a manner designed to eliminate che loss of vibra-

tion energy to tie surrounding structure. The measured viscous damping

ratios ftr these composite honeycomb panels fell into mode-by-mode groups

(Figure 7.1). These damping datu proved to be repeatable within 10 percent,

on reassembly of the test facilit- from year-to-year. The friction damping

at the fastener line was shown to be small. much sma]lr than originally

expected. The material damping was shown to be significant in only the

Kevlar honeycomb panels. As a consequente, it was concluded that the domi-

nant contribotion to the damning is from the acoustic radiation. The theory
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in Reference [7.3] was modified [1.101 for application to larger panels and

to incluie the effects of stiffener flexibility. - Since the acoustic mediation

d!amping is highest In the fundamental mode [7.3], the modified acoustic radi-

ation theory was used to predict the damping in this mode. Material demping

uas added to the predicted damping only for the Keviar honeycomb panels. A

comparison of the measured and predicted damping in the ftindamental mode of

the composite hon, comb panels is illustrated 'In Figure 7.2. The theory was

also applied to the fundamental mode of the alumninum honeycomb panels (7.12]

wich clamped edges. The results± of this comparis:)n are illustrated in Fig-

ure 7.3 In general, the correlation appears to be reasonable for all oil

these honeycomb panels, when considering the simplicity of the analysis.

Energy losses, due to friction and gas pumping, are nonexistent in

integrally stiffened panels. Since the mat.aria. damping is small in
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- Figure 7.3. Comparisor of theoretically predicted and measured viscous

damping ratios for fundamental mode of stiffened aluminum
honeycomb panels.

graphite/epoxy composites, it is concluded that the damping in integrally

stiffened graphiteiepoy- panels must be due. primarily, to acoustic radia-

tion. This conclusion was verified 17.13, 7.J4] by applying the w.dified

i double-sided acoustic radiation theory to an integrally blade-stiffened

mini-sandwich panel with a-large center bay [7.13), using a sinusoidal approx-

imation to measured mode shapes. Reasonably good correlation (Figure 7.4)

was obtained with measured damping data for the fundamental and the higher

order panel modes. The cancellation effect 111.3, L.4], is seen to reduce

the damping in the higher order panel modes quite dramatically (FAlgure 7.4).

The acoustic cancellation effect is also present in panel arrays such

as the three-bay integrally J-stilrfened graphite/epoxy panels described in

Reference 17.131. The cancellation effect reduced the damping in the funda-

mental mode of this three-bay panel to a level f7_13] that was an order cf
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Figure 7.4. Comparison of theoretically predicted and measured viscous
damping ratios of blade stiffened mini-sandwich grapbitei

epoxy panel.

magnitude less than Lhat measured on the mini-sandwich panel with the large

center bay. The adjacent bays were vibrating out-of-phase in the funda-

mental mode. The certer bay was just a little larger than the two outer

bays. The acoustic radiation damping ratio, predicted by assuming equal bay

sizes, was almost two and a half times the -measured damping ratio, indicating

the importance of using the correct mode shapes. The cancellation effe.-t is

also obtained in fastener attached panel arrays in which the out-of-phase

vibration of adjacent bays is fully correlated across the stringers. The

correlation between the vibration Of Ewo panels across a heavy frame is, gen-

erally, very low [.5.This result allowed the panel array between two

frames to be considered separately. When the correlation between two adja-

cent panels across a stringer is also very low, such as obtained with uneven

stringer spacing or with turbulent boundary laver excitation [7.161. the

individ-ial panels can bz treated as vibrating alone. The sound radiated by

such a planel array is equal to the st- of the .f ouaId radizted by each panel in

the array vibrating alone 17.i7j.
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Acoustic edge conditions also have a significant effect on the damping

in stiffened panels. The viscous damping ratio in the fundamental mode of

the above ccmposite honeycomb panels dropped down to a value around 0.0035

when removed from the baffle [7.10, 7.11], but remained in the same order of

magnitude, as measured in the baffle, for some of the higher frequency modes.

The viscous damping ratio in the fundamental mode of a fastener attached

stiffened aluminum panel [7.18' was reduced by forty percent to a value

around 0.006 (Figure 7.5) when tested later in the unbaffled condition. The

viscous damping ratio of 0.0085. measured for the stringer bending mode of

a wire suspended unbaffled riveted panel array [7.19] "gave almost the same

results" in vacuum. All of the bays vibrate in phase in the stringer bend-

ing mode. These results indicate that most, but not all, of the acoustic

radiation damping in the lower frequency panel modes is eliminated by the

removal of the baffle.

The damping in stiffened aluminum panels remained undffected by signifi-

cant axial tension load [7.181, but increased with t .ession load on

approaching panel buckling. A similar increase in damping was obtained in

integral] tiffened graphite/epoAy panels on approaching shear buckling

[7.20]. It is suspected that this increase in damping may be related to an

increase in acoustic radiation.

Acoustic radiatioa damping, sometimes called air damping, is present to a

varying dezree in most structures, depending on the structural and acoustic

edge conditions. The acoustic radiation damping is lowest in Lhe free-free

beams [7.21, 7.22, 7.23, 7.24' and panels [7.111, since the particles of air

have !e travel laterally From the high pressure regins to the low pressure

regions nroduced by these beams and panes during each v ai ycle. This

lateral motion of the air particles is accomplished with a m*.ini-r;u of energy

loss. Typical in-air and in-vatu. ... viscous damping ratios for th first two

modes of free-free graphit-e-epwo beams !7_- ] are iuat in F4gure 7.6.

TIe average con-ibution from acouAtic r a " th iscous damping ratio
ni these COmposite beams is anDroximat'y 0 000- . An even lower vafle was

measured in the tests described in Refeence [ .3j eariatin oI~ec 72] h al~o fti

~7-
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acoustic radiation damping with amplitude is not expected to be very large.

The very low acoustic radiazion damping is une reason why the free-free beam

vibration tests are used to provide a quick measure of the material damping

in aerospace structural materials.

The acoustic radiacion or air damping in cantilever beams can be quite

significant [7.25, 7.26, 7.271, since the air particles have to flow from one

side of the beam to the other. The energy loss is also expected to be ampli-

tude dependent since the path length traveled by thc. ir particles increases

with the amplitude. in fact, rhz acoustic radiation damping increascs propor-

tionallv with velocity at low vibration amplitudes and with velocity 0quared

at high vibration amplitudes [7.25J. At low amplitudes, it is also a function

of the cantilever beam length to thickness ratio [7.251 as illustrated in

Figure 7.7. Air damping is also a function of the surface area for canti-

lever plates 12.16. Thus, care must be taken when using cantilever beams

to measure material damping.

In conclusion, acoustic cadiation is the dominant source of damping in

stiffened aluminm and composite honeycomb panels as well as integrally

stiffened composite panels. The damping in fastener attached skin-stiffener

type aircraft panels is due primarily to a combination of acoustic radiation

and friction damping az the fastener lines.

7.2.2 Friction Damping

7.2.2.1 General Aerosnace StrucLures

r"Cion or Coulomb dAping is Renerated by slippage between two contact-

ing sulfaces. The damping force is, generally, assumaed to be eania to the

- ftic. td and th, nor-al Jorce, but

independen of -r: ve1 ocity. In a- -xeriment. describd in Reference .-

the equivalent Coe cient osliln fic tio- , was showr to be L ependent

both :reuencv and------u o y, depene-n on -h- -orce t, a N

ilustated in igue r'. The equi-alent .Co c.er. s 1 I- c

was dee--Ined from the area of the ner-tt :eCwangular measured force -sp

-0

__ ___ _ ___
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Figure 7.8. Variation of equivalent friction coefficient during
sinusoidal motion with normal load, frequency and
maximum re1ative velocity.

loops. The energy loss per cycle, and therefore, the coefficient of friction,

can change with time as the contacting surfaces become smooth with w'ar 17.291.

A review of dry friction damping technology and Lhe basic analytical models

used to represent dry friction is also contained in Reference [7.281.

In bolted joints, a threshold force lcvel n-,st be exceeded before slip-

page can take place, In some multi-jointed str- es, for example, clom-

plete aeroplanes, more and more joints begin to :lLp with a progressivelv

increasing excitation level, producing b(th an increase in the measured

damping and a reduction in the resonant frequencies of the modes, as a func-

tion of the excitation level. The damping in structures can, in fact, be

optimized by controlling the interface slip in joints 17.30, 7.31, 7.32]. In
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unmanp,.e spacecraft, the nonlinear behavior of joints can be even more complex

[7 .,,, as illuotrated in Figure 7.9 for the high gain antenna on the Galileo

spacecraft. The level of the damping in unmanned spacecraft and satelliter

has been established [7.34, 7.35] during modal testing on the ground (Fig-

ures 7.10 and 7.11). Limited damping data measured nn a spinning satellite

in orbit [7.34] indicate that similar damping levels are also encountered in

orbit, as illustrated In Figure 7.10. These results indicate that friction

damping is the major source of damping both on the ground and in orbit. Addi-

tional sources of information for measured spacecraft modal damping are con-

tained in Reference [7.36].

The damping of vehicles used in launching the above spacecraft is also

important for use in launch loads analysis. Such a damping schedule [7.34]

is illustrated in Figure 7.12 for the Titan Launch Vehicle. The equivalent

viscous damping ratios were also measured [7.37] on the space shuttle ascent

vehicle during Stage 1, Stage 2 and Orbiter ground vibration tests. Stage 1

test involved the ascent vehicle Lonsisting of the Orbiter, the external tank

and the two solid propellant motors while Stage 2 test involved only the

Orbiter and the external tank. The measured damping ratio during launch,

ranged between 0.016 to 0.024, with an average value around 0.021. These

data were in reasonable agreement with the average value of 0.017 (Figure 7.13)

14.5
14TES _ SXA Y AXIS

z
S13.5

0 13.0 TST SXA X AXMS
U.

12.5

12.0
0 5 IQ 15 20

TIP ACCELERATION - ZERO TO PEAK

Figure 7.9. Variation of the Galileo spacecraft
high gain antenna frequencies with
amplitude.
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Figure 7.13. Equivalent viscous damping ratios (damping factors)
measured during space shuttle ascent vehicle
Stage I vibration tests.

measured during the Stage I test. The average damping ratios, mpasured during

the Stage 2 and Orbiter ground vibration tests, were 0.021 and 0.032, respec-

tively. Generally, the lower levels zf the measured damping are used in the

design of control systems (Figure 7.13) for these vehicles.

Clip-on joints [7.38, 7.39] may also be used on large space structures

such as the space station. Flexibility in these joints will provide friction

damping for these structures. ModIs for representing the friction energy

dissipated in these joints are currently buing developed 17.40). However, if

high pointing accuracies are required, the supporting tructure may have to be

fabricated wit1, rigid joints. The resulting damping in the str,:cture will be

due entirely to material damping. In this event, the uzi- of active and pass-

i'.e dampit.g will be required to suppress any excessive vibration levels, since

the material damping is usually very small in most aerosiace structural

materials.
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Friction damping has been used to suppress resonant vibrations in other

fields of engineering such as in shock and vibration icolation by means of

multistranded cable vibration isolators [7.40] and in turbine engines [7.41,

7.42], to name a few. Welded (or integral) components such as compressor

blades, turbine blades, compressor guide vanes and inlet guiCe vanes, have a

tendency to develop cracks from excessive vibration levels, due to the very

low inherent (material) damping in such components. The measured viscous

damping ratios, obtained from an integrally machined turbine stage (7.41],

were found to fall between 0.00032 to 0.00062, which is comparable to the

level of the material damping. Indications are [7.41, 7.42] that friction

damping produced by root slip, could increase the blade damping by an equiva-

lent viscous damping ratio of around 0.001. This level of damping is quite

small but still significantly greater than the measured damping in the inte-

grally machined turbine stage. The blade damping does increase with the

vibration anplitude [7.41, 7.421, but decreases again with increased centrifugal

force [7.421.

7.2.2.2 Stiffened Panel Structures

Friction damping, at the fastener lines of stiffened panels, was first

investigated many years ago (7.6, /.7] and continues to be a source of inter-

est in more recent years [7.1, 7,19]. The earlier studies revealed a compli-

cated behavior depending on the load amplitude at the joint. In a more recent

study [7.19], the damping of a wire suspended unbaffled panel array, vibrating

in the stringer bending mode, was overestimated by a factor of three based on

the friction damping measured in simple crossed double cantilever coupon tests,

in a vacuum. The measured friction related joint dissipation coefficient,

which is proportional to the loss factor, was found to be constant with the

Joint load amplitude [7.19].

The model assumed a tension-compression type loading on the fastener. A

recent dynamic panel edge theory 17.10, 7.431, indicates that the fastener is

subjected, basically, to a tensicn-tension type loading, during the reverse

bending cycle of the panel, in both the stringer torsion and bending modes.

A net positive-positive bending moment is also acting on the fastener during
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the same panel bending cycle in the stringer torsion mode, assuming that a

sagging panel bending moment is positive. The above behavior is due to the

local deformation produced in the panel during the reverse bending cycle when

bending over and away from the stiffener flange takes place. These deformations

combine to prcduce a panel upper-surface fastener-line strain, normal to the

panel edge, that is purely compressive during the panel reverse bending cycle.

The validity of the above theory has been verified by stress coat patterns

in the vicinity of the fastener line [7.44] and by the correlation achieved

between the predicted rms strains and those measured on both aluminum honey-

comb [7.12, 7.45, 7.46], and composite honeycomb [7.10] panels. The lower

surface of the panel makes line contact with the adjacent stiffener flange

edges alternately during the stringer torsion mode and simultaneous contact

during half of the panel bending cycle in the stringer bending model. Since

the crossed double cantilever coupon made line contact along four edges during

half of the panel. bending cycle, as acknowledged in Reference [7.19], the pre-

dicted panel array friction damping based or the coupon data, should be much

lower.

The ;'e3ults, in Figure 7.8, show that the sliding friction coefficient

is independent of frequency and velocity. The results in Reference [7.19]

indicate that the loss factor is independent of the load amplitude at the

fastener line, at least for skin-stiffener type pLnels. It is, therefore,

reasonable to conclude that the friction damping at the fastener line of

stiffened panels is indeed a constant, dependent only on the number of fas-

teners along the panel periphery [7.47).

7.2.3 Gas Pumping at the Fastener Lines

The damping in the crossed double cantilever coupon [7.191 was increased

by a factor of two when tested in air. This increase was attiibuted to air

or gas pumping in the joint region. Gas pumping [7.1, 7.5] is also encoun-

tered in fastener attached stiffened panei type structures vibrating in air.

The damping is due to the local displacement of air produced by the relative

motion between the stiffener flange and the panel during the vibration cycle,

i-I
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The mechanism of gas pumping at the fastener lines is, thus, well understood

and its contribution to the panel damping generally predictable [7.2, 7.51.

The gas pumping contributes to the pane] damping generally at the higher panel

frequencies,

7.2.4 Material Damping

The energy dissipated internally within a material is known as material

damping. Knowledge of the damping in aerospace structural materials has

taken on a greater importance because of the increased activity in space.

A considerable amount of information is available on the internal damping in

metals. Some of the internal mechanisms responsible for producing the mate-

rial damping in metals have been identified. More attention is currently

being focused on the damping in composite materials. Investigation into the

material damping in composites started in the late 1%'Os. The effort has

expanded since that time, to include newer materials such as metal matrix

composites. Of interest are the effects of the high stiffness fibers and

whiskers on the material damping of the matrix metal. The resin, the type of

fiber and the fiber orientation can also affect the material damping of

polymer matrix composites. In general, the material damping is very low in

both aerospace metals and most uniaxial composites. The low level of the

damping also places great demands on the test methods used to measure such

data.

This section contains a brief introduction to the*basic theoretical

representation of the material dampir.g, a brief discussion on the damping

mechanisms in metals, and a summary of typical measured material damping

levels in both metals and composites. The more recent test methods used in

obtaining the damping data are also discussed. In general, the trend has

been to use resonant testing under near vacuum conditions, after first demon-

strating that the damping due to the fixture is small compared to the measured

material damping. Both because of its very low material damping and the theo-

retical predictability of this damping, aluminum alloy has become the standard

material for calibrating such test facilities.
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7.2.4.1 Theoretical Basis for Mate rialDam in,

No material is perfectly elastic. When the material is cycled under

load, a hysteresis loop is obtained when the resulting stress, i, is plotted

against the strain, . The area enclosed within the hysteresis loop repre-

sents the energy dissipated per cycle by the material. This can be expressed,

in terms of the instantaneous stress, G, and strain, rE, by

D f - dc (7.2)
J

where D is the specific dampig energy per unit volume. It provides a measure

of the capability of a given homogeneous material to dissipate energy under

cyclic loading. in the low to intermediate stress range, the specific damping

energy is assted to obey the simple relation.ship j7.41

n (7.3)

Cfor many materials, where J is a constanL and n takes on a value between 0.5

and 2.5. Both J and n are determined experimentally. The above model for the

material damping is linear when n - 2. Other linear models for the material

damping are discussed in Reference 17.49].

It is more convenient to represent the energy dissipated in a nondimen-

sional form by relating the energy, Ds , 4issipated in a volume, v, of the

material to the maximum strain energy, stored in the material. Since, from~S
Section 2.0,

Ds ff :c dv (7.4)

and

s =- j t dv (7.5)
v
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the loss factor b is given by

= D /2rU (7.6)5 5

and the viscous damping ratio (equation 7.1) by

D = Ds/4;U (7.7)

In equations 7.4 and 7.5, c is the strain rate, .. is the circular frequency and,

c and E are the maximum (zero to peak) stress and strain amplitudes, respec-

tively. The materiil damping is often expressed in terms of the specific

damping capacity, F, given by

= D /U (7.8)
,s

7.2.4.2 Material Damping Mechanisms in Metals

There are many linear and nonlinear internal damping mechanisms in metals

[7.48, 7.50, 7.51, 7.52]. A linear damping involves a hysteretic stress-

st-rain loop that is basically elliptical in form, with the energy dissipation

proportional to the square of the strain. The linear damping is produced by

a relaxation mechanism involving thermal processes within the material. The

viscous damping ratio, for materials exhibiting these characteristics, is

generally dependent on frequency and temperature but not stress amplitude.

For example, the major contribution to the material damping of aluminum beams

undergoing flexure at room temperature, is due to heat flow from the warmer

compression fibers to the cooler tension fibers. The viscous damping ratio

due to this linear relaxation mechanism can be calculated from the relationship

AT 2c_ t(7.9)
'R'1 + (f/fR)'
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where

T = temperature

a thermal expansion coefficient

c = specific heat

E - Young's modulus

f = relaxation frequency

f - measurement frequency

The relaxation frequency, derived from the work described in Reference [7.501,

is given by

f K (7.10)
R 2 h 2

2 c

where K is the thermal conductivity and h is the beam thickness. A comparison

between the predicted and measured 17.26, 7.531 damping is illustrated in

Figure 7.14. Additional comparisons between the predicted and measured alumi-

num material data are given in References [7.24] and [7.28).

Nonlinear damping in metals is the result of the following mechanisms:

(i) Deformation of inclusions such as zraphite flakes in hard metal

matrices associated with composition alloys, in which the dissi-

pation of energy takes place within and along the boundaries of

the inclusion.

(ii) Maznetomechanical effect in Ferronaetic alloys, involving the

dissipation of energy during domain wall -movements as a result

of an externally applied stress or magnetic field.

(iU Dislocation movements at high stress amplitudes in m-etals such as

magnesium and its alloys. A linear damping mechanism is obtained

at low stress aplitudes.
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(iv) Two phase boundary movement ii metals such as antiferroma.netic

and ther-moelesric martensitic alloys.

The damping, in most but not all of the metals with nonlinear damping

mechanisms, tends to vary with the dynamic stress zmplitude. The damping in

metals exhibiting the fourth type of nonlinear damping mechanisms described

above, tends also to vary with temperature, whereas the damping is constant

with temperature for the metals in the other three categories. The damping

levels in metals with both linear and nollrear camping mechanisms are sum-

marized in the following section.

7.2.4.3 Material Daping Levels in Metals and Other Materials

The measured material damping in aluminum and its alloys is very LOW

(Figure 7.14) ranging between a viscous damping ratio of 0.00005 and 0.0012
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with the possibility of even lower levels at higher frequencies. Other

aerospace metals such as alloy steel have a slightly higher material damping.

Typical material d?mpIng values for a number of structural materials, are

listed in Table 7.1 based on data from Reference 7.51]. The damping mechan-

ssms for a range of materials 17.521 are listed in Tables 7.2 and 7.3 while

the corresponding varations in the viscous damping ratios with zero-co-peak

stress amplitude are illustrated in Figures 7.15 and 7.16, respectively. The

data in these figures have been adapted from Reference 17.521. A compre--

hensive sumary of the material damping in both metallic and nonmetallic

materials is contained in Reference 17.551, in non-reinforced plastics in

Reference 7.561 and for highly damped metals in Reference [7.51]. The damp-

ing mechanism in these highly damped metals, called 'lidamzts," arc surmarized

in Table 7.4 while the composition of the metals are sumarized in Table 7.5.

The data in Reference [7.511 inckde variation of the damping with temperature,

dynamic strain amplitude, static strain and frequency. For quick reference

purposes, the viscous damping ratios measured at a stress level equal to one

tenth of the yield stress, are illustrated in Figure 7.17 together with the

data for aluminum and steel for comparison.

7.2.4.4 Material Damping in Composites

The earliest measurements of the material damping in composites were made

usually in air using either cantilever [7.57, 7.581 or free-free beam flexure

specimens. The free-free beams were supported at the outermost nodal lines

either by two polyurethane foam knife edges 17.23] )r by two vertical strings

[7.11, 7.24, 7.58, 7.59, 7.601. Free-free [7.59, 7.60] and damped [7.22.

7.231 beam specimns were also tested in torsion to obtain the sheax damping.

The damping devices used with the cantilever specimens [7.58], the foam knife

edges [7.24) and the air (acoustic radiation) damping [7.24. 7.581 all con-

tributed to the damping of the specimens, in addition to the material damping.

As previously mentioned, the air damping can be especially significant in

single and double cantilever test specimens, a resilt that encouraged tes -ng

under near vacuum conditions [7.58, 7.61, 7.621. Aithough the dir dampin is

lowest in the free-free beams (Figure 7.6 this d.mping can vary from test

specimen to test specimen [7.61). Nevertheless, free-free beam tests in al

asm -2



TABLE 7.1. TYPICAL VISCOUS DAMP TUG RATIOS FOR STRUCTUAL MATERIALS
AT SMALL AMPLITUDES AN) ROOM TEMPERATURE IN TIE AUDIO
FREQUECY RANGE

Material Viscous Da-pinS Ratio

Aluminum t0.00035
Brass. br1nze <0.010105

Brick 0.005 - 0.01

Concrete 

.

Light 0.0075

Porous 0.0075

Dense 0.005 - 0.025

Copper 0.001

Cork 0.065 - 0.085

Glass 0.0003 - 0.0-31

Gypsum board 0.003 - 0.015

Lead 0.00025 - 0.001

Magnesim 0. 00005

Masonry blocks 0.0025 - 0.0035

Oak, fir 0.04 -0.005

Flaster 0.0025

Plexiglass, Lucite 0.01 - 0.02

Piywood 0.005 - 0.0065

Sand, dry 0.3 - 0.6
Steel, iron 0.00005 - 0.0003

Wood fiberboard 0.005- - 0.015

Zin 4AO .0001i C
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TABLE 7.2. IDF.NTIFICATION AND DAMPING MECHANISMS FOR MATERIALS
IN FIGURE 7.!5

Sample
Number Material Damping Mechanism

1 Plexiglass Viscoelastic

2 Polystryenc Viscoelastic

Cast magnesium Dislocation
99.9% pure

4 Mg - 0.6% Zn Dislocation

5 Mg - 0.9Z Pislocation

6 Mg - 8.!% A), 0.5% Zn, Dislocation
0.2% Mn

I Austenitic steel Dislocation
Oil ouenched from1000dC, 16 hours,

650 C

8 Pearlitic gray Graphite flake
cast iron 3.b3% C,
3.39% Si, 0.54% Mn

9 Pearlitic gray Graphite flake
cast iron 3.01% C,
2.49% Si, 0.53% Mn

10 Pearlitic nodular Graphite nodules

cast iron

11 Mn - 35.9% Cu, Two phase material
0.24% Fe,
Heat 1 hr. 790 C6
quench 2 hr, 450 C

12 N - 155 Alloy, Fe High Temperature
21.77 Cr, 1.9% W, Damping (15000 F)

0.15% C, 19.47 Ni,
1.74Z% Mn, 19% Co.
0.76% Cb. 2.76% mo,
0.37% Si quenched,
aged

13 Stellite Co - 0.,5% C5, High Temperature
..4 0.42 Mn, Damping (1500 C)

24.87 Cr. 0.93% Si,
10.- 4 Ni, 7.2 6 W

7ca-
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TABLE 7.2 (continued)

Sample
Number Material Damping Mechanism

14 Ti - 3.9% Al, 4.3% Mr., High Temperature
0.1% C annealed Damping (6000 F)

15 Sandvik Steel Fe - Not available
1% Cr, 0.2% Si,
1% C, 0.26% Mn,
0.24% Mo, quenched
tempered

16 Free cutting brass Not available
Cu - 35% Zn, 3% Pb

17 Al - 5.5% Cu, Not available
0.5% Pb, 0.5% Bi

13 Al - 4% Cu, 0.5% Hg, Not available
0.5% Mn

19 Naval brass Not available
Cu - 39% Zn, 1 g Sn

7-27
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Figure 7.15. Variation of the viscous damping ratio with stress
amplitude for materials listed in Table 7.2.
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TABLE 7.3. IDENTIFICATION FOR MATERIALS IN FIGURE 7.16 HAVING
MAGNETOMECHANICAL DAMPING MECHANISM

Sample
Number Material

Fe - 3.3% Si, anneal 5.5 hr
at 1200C

IS Sample 1
Saturation Na-netic Field

2 Pure Nickel

2S Sample 2
Saturation Magnetic Field

3 NIVCO
73.5% Co, 22.5% Ni, 1.8% Ti,
1.1% Zr

4 403 Steel Alloy
Fe - 12% Cr, 5% N

5 Mild Steel
0.28% C, 0.2% Si, 0.79% Mn,
0.12% Cu, 0.14% N, 0.1% Cr,
annealed 18 hre at 625°o

5S Sample 5

Saturation Magntic Field

6 Carbon Steel
0.42% C, 0.32% Si,
0.997 Mn, 0.09% Ni,
0.06% Cr, normalifed

6S Sample 6
Saturat'on Magnetic Field
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TAELE 7.4. CLASSIFICATIOY OF HIGH DAMPING M4ETALS

Type Damping Mechanism Alloy System Example

(i) Natural Viscous or plasL±'! flow Fe-C-Si Gray cast iron. 1
Composite across phase boundariqs Rolled nodular

between matrix and the iron.
second phase.

(ii) Ferromagnetic Magneto-mechanical Fe and Ni T.D. Nickel
Alloys static hysteresis due FWe-Cr 12% Cr-steel

to irreversible move- 7e-Cr-Al Silentalloy
ment of ferromagnetic r~e or Ni- Gentalloy
domain walls alloys Vacrosil

Co-Wi-Ti NIVCO

I(iii) Alloys Based Static hysteresis du,: Mg
on Disloca- to the movement of dis- Mg-O.6% Zr KIXI-alloy
tion location loops, MG-Mg Ni
Damping :reaking away from 2

pinning points.

(iv) Alloys with Movement of twin Mn-Cu Snso
Movable Twin- boundaries martensite- Mn-C u-Al Incramute
or Phase martens ite boundaries Cu-Zn-Al Proteus
Boundaries and boundaries between Cu-Al-Ni

martensite and the Ti-Ni NizinolL matrix-phase jCo-Fe

7-31
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TABLE 7.5. SPUMMARY OF ALLOYS TESTED WITI TYPE OF
DAMPING MECHANISM

Alloy System -
and (Type) Composition Name

Fe-C-Si (I) Fe - 3,-.3, 5% C Cast Iron
- 2^.2, 5% Si

Fe-Cr-Mo (II) 1 Fe - !2% Cr - 3% Mo Gentalloy

Fe-alloy (II) Fe - 23% Cr - 3% Al Vacrosil

Mg (pure) (III) Mg Magnesium

Mg-Zn- (III) Code S499-1 S499-1
Rare Earth

Mg-Zn-Cu-Mn (Ill) Code S730-6 S730-6

Mn-Cu (IV) 54% Mn - 37% Cu - 4% Al -- Sonoston

3% Fe - 2% Ni

Ti-Ni (V) Ti - 51 at % Ni Nitinol

Cu-Zn-Al (IV) Cu - 131-21% Zn Proteus

I - 2 8% Al

Cu-Zn-Al-Ni (IV) Cu 13,v21% Zn- Proteus
1 1 2, 8% A I-
_, 02% _ _ _
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Figure 7.17. Viscous damping ratri- for various alloys at a stress
level equal to Gne tenth of the yield stress as a
fumnction of the elzstic modulus.

provided some of the earliest indications of the low level of damping present

in the unid-irectional composites. Similar damping measurements have also been

performed on free-free graphite/epaxy and Kevia-r honeycomb panels t _at were

also sL.pported by two strings 17.1111. T.hese and other test methods are dis-

cussed in more detail in Section 7.2.4.5.

Problems were also encountered in fabricating the graphite/epoxy test

specimens on account of the resin rich prepreg available at the time. As a

consequence. the early c,-mposite test specimens tended both to be resin rich

and to have a high void c-intent. The importanCe of fiber volume on the damp-

ing 17.2.3] of composites (Figure 7.18). in ad.dition to the modulus, was

recognized early in the (lam-ping studies. although the variation of the damping

with fiber volume (Figure 7.19) aid not always vield "he expected results

[7.63]. Some problems were encountered in the adhesion between the resin and
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Figure 7.18. Variation of viscous damping ratio with fiber volume
in early beam tests.
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Figure 7.19. Comparison of viscous damping ratios, as a function

of fiber voltLme, measured in early beam flexure

tests.

friber 17.61, 7.631 that were later solved by the use of suitable fiber surf.--e

c~reatments. The lack of adhesion could increase the damping through friction.

On the positive side, it was recognized early that shear effects could

be encountered more easily in composites than in m-etals on a-Count of the high

Young's m--odulus to shear modulus ratio possible in the composites. The test

beams are required to have a length to t-hickness ratio of 100 or more [7.61.

7.641 to minimize the shear effect just in the fundamental modie. This ratio

has to be even greater if, for example, the first three modes are to be,

essentially, free of shear effects. Alternatively, both the damping [7.611

and the modulus 17.641 need to be corrected for the shear effect. if the abov-

requirement is violated or if even higher modes are included in the develop-

&-nt of the damping data. A theoretically deriv--d correction factor for the

Young's modulus is illustrated in Figure 7.20 as a function of both the mode

number and the ratio of the axial Young's madulus to the shear modulus (E/G).
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Figure 7.20. Theoretical correction factor for the Young's modulus
obtained from measured flexural beam resonant

frequencies as a function of mode number.

The earliest research aiso focused on developing the ability to predict

both the axial, shear and flexural damping of unidirectional composites based

on the material damping-of the resin 17.61, 7.65, 7.661. The fibers were

assumed to provide no damping in this analysis. Thus the material damping of

composites is dependent on the damping of the resin, used in the fabrication,

the lowest damping being obtained in composite beams with axial fibers. The

early theories predicted the form but not the level of the material damping

in the composites. Modifications 17.67. 7.68) to these theories produced

methods that predict the material damping of cross ply composite beams 17.671

and beams with even more complex fibe-r orientations 17.681 with good accuracy.

The typical agreement achieved between theory and test data 17.68), is illu-

strated in Figure 7.21.
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Analytical methods have also been developed [7.69, 7.70, 7.71, 7.72] for

predicting the modulus and damping in discontinuous or chopped aligned fiber

composites. The correlation achieved between these methods and measured data

is reasonable 17.71, 7.721. This correlation can be improved by including

fiber damping in the theory [7.71]. The characteristics of the discontinuous

fiber composites are illustrated in Figure 7.22 which includes the variations,

with fiber aspect ratio, of the loss modulus, E", and the storage modulus,c
El of the composite, expressed in terms of the corresponding loss modulus,c*

", and storage modulus, 8', of the matrix material. The composite is
m m
assumed to have a fiber volume, vf, of fifty percent while the fiber is

assumed to have no damping in the abore figure. The loss and storage moduli

are the real and imaginary part of the composite complex Young's -modulus,

respectively. The viscous damping ratio of the composite is given by E"/2E'.
cC

There appears to be an optimum value for the damping in the composite,

obtained at the expease of a reduced stiffness. This behavior [7.71] is

similar to that observed in a layered viscoelastic damping treatment [7.73j.

In fact the material damping of a composite plate has also been increased

significantly [7.22] by the use of randomly distributed discontinucus fiber

composite material in the outer layers, providing an effect similar to that

observed in extensional and constrained layer viscoelastic damping treatments.

Fiberglass Composites - The earliest damping tests concentrated on glass

fiber composites. The measured damping data obtained from these and later

tests are starized in Table 7.6. The measured viscous damping ratio for

axially fiber reinforcea beams range from a low of 0.00051, measured ir vacuum

with free-free beams [7.58), to a high of 0.0016, measured in air with double

cantilever beams [7.59], using the third mode to reduce the air damping effect

(Figure 7.23). The difference between the measured aluminum beam damping in

the third mode (Figure 7.23) and that indicated by the Zener curve in Fig-

ure 7.14 is approximately 0.0004. Thi3 result suggests that the actual

=aterial dawning is closer to 0.0012 in the third mode, which is comnarable

to tither test data -sured at comparable fiber volume fractions. Similar

double cantilever beams that were tested in vacu- , but at a higher dynamic

strain level 17.581, yielded a viscous damping ratio of approximately 0.0008.
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This result indicates that the damping could contribute as much as 0.0003 to

the viscous damping ratio of the beams.

In general, the material damping is highly dependent on the fiber volume

fraction, vf, of the composite. The fiber volume fraction for the beams with

the 0.00051 viscous damping ratio was estimated from the dynamic moeulus to

be around 0.72. This fiber volume is higher than normally used. A more

common value is around 0.50. At this volume fraction, the viscous damping

ratio is around 0.0007 [7.67, 7.68] at the lower frequencies (50 Hz). The

viscous damping ratio increases with frequency, reaching a value of 0.0013

at 430 Hz 17.67]. However, the data in Reference 17.59] indicate viscous

damping ratios of 0.0009 and 0.0016 at frequencies of 900 Hz and 5000 Hz,

iespectively. The viscous damping ratio remains constant with amplitude or

surface stress level up to the damage level in the composite [7.74]. The

damping is increased by the damage. A significant increase in the damping

can be obtained by using other than axial fiber orientations at the expense

of reduced composite stiffness. The damping is controlled by the damping in

the resin. This result is also true for chopped fiber composites (Figure 7.24)

(7.67]. The damping for these composite materials is constant with frequency.

However, when this damping is measured in air, it increases with frequency

[7.761.

Graphite-Epoxy and Graphite-Polyester Composites - The polyester resins

used in fabricating some of the earliest test beams have given way to epoxy

resins. The damping data for graphite fiber reinforced composites made with

both resin systems are summarized in Table 7.7. In gencral, the damping of

axially reinforced composites made with polyester resin (7.23, 7.63) tdnded to

be higher than those made with epoxy resins (Figure 7.19). The viscous damp-

ing ratio for the graphite/polyester composites varies typically from 0.0009

to 0.0012, corresponding to fiber volumes of 62 to 50 percent, respectively,

at ambient temperature. The viscous damping ratio for axially reinforced

graphite fiber composites made with epoxy resins tends to be between 0.00024

'7.781 to 0,00068 (7.22, 7.63, 7.75, 7.77] for fiber volumes above 50 percent

although viscous damping ratios as low as 0.00012 have been measured 17.61].
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The damping in these composites is constant with both frequency [7.22, 7.29)

and surface dynamic stress level [7.29). The damplnL increases substantlally

when other fiber orientations are included [17.22. 7,29, 7.75, 7.77, 7.78] at

the expense of reduced stiffness as iliustraed Ln ?-2,1_ir 7.25(b). Increased

shear damping effect [7.61] is present in the high,!r -a flexural modes,

which is responsible for the increase in the damping with frequency observed

in Figure 7.25(a), starting with the second mode. As a corsequence, data for

the first mode only are included in Table 7.7 and in Figure 7.25(b).

The variation of the damping with temperature of both the epoxy resin

and the graphite/epoxy beams is illustrated in Figures 7.26(a) and (b),

respectively. The resin, being a polymer, behaves in a similar manner with

temperature as the damping materials, previously discussed in Section 2, with

the peak damping occurring in this instance at 00C (Figure 7.26(a)). The

axially reinforced beam damping remains essentially constant over the tempera-

ture range shown in Figure 7.26(b). However, the damping in the beams with

±450 and 900 fiber orientations basically follows the shape of the resin

damping curve. All fiber reinforced polymeric composite materials are

expected to behave in a similar manner.

The damping in the resin determines the damping in the uniaxial composite

L7.61, 7.65]. The effect of resin damping on the damping of the axially fiber

reinforced composite can be observed in the data in Table 7.7 from Refer-

ence [7.78], although damping data were not available for the Normco 5208 and

5213 epoxies. The 5208 epoxy appears to have the greater damping. The effect

of resin damping can be seen more clearly in Table 7.8 in damping studies

[7.721 performed with chopped fibers although the resins were not identified.

A significant increase in composite material. damping can be obtained by the

use of a highly damped resin.

Chopped fibers 17.22, 7.72, 7.791 provide another means of increasing

the material damping in composites. The data indicating the increase in

damping possible by the use of chopped fibers and combinations of continuous,

chopped random fibers [7.221 are illustrated in Table 7.9 and Figures 7.27
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TABLE 7.8. EFFECT OF RESIN DAMPING ON THE DAMPING OF CHOPPED ALIGNED
GRAPHITE FIBER COMPOSITE

Chopped Fiber Composite
MaterialResin (Vf = 0.6)

Identified by Viscous Viscous
Resin Number Modulus aping Modulus Damping

Only [7.72] MSo MS! Ratio,

1 0.144 0.075 13.25 0.004

5 0.475 0.0035 17.62 0.00025

6 0.249 0.075 16.69 0.005

TABLE 7.9. DMPING IN DISCONTINUOUS ALIGNED AND RANDOM rIBER
GRAPHITE/EPOXY COMPOSITES

Youig's Modulus Viscous Damping
'MSI Ratio,

Beam Construction [7.22] Ist Mode 2nd Mode 1st ode 2nd Mude

12.9 12.8 0.00043 0.00062

12.8 12.9 0.00039 0.00044

11 ,,t !.12 I1.11 I 0.0038 0.0034

lllI llll 1.28 '.3 3.0042 0.0047

13.9 13.? 0.0003 0.00084

14.9 if. 0.00025 0.00043

9.5 9.6 0.0006 0.00095

97 3.1 0.0019 0.0023

1.96 1.97 0.0023 0.0023

U.ntinuous Type A Fiber
Choppt. Aligned Type A Fiber
Random HT-3 Fiber
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and 7.28. The increase in damping is obtained at the expense of reduced

stiffness.

Boron/Epoxy Composites - The increased damping data on boron/epoxy

ccmposites [7.60, 7.62, 7.75] is summarized in Table 7.10. In general good

agreement has been obtained by the various researchers on the damping in the

boron/epoxy composites. The damping of the axially fiber reinforced com-

posite is arotud 0.0006. The measured modulus in Reference [7.62] falls with

frequency while the damping increases with frequency. This behavior is

attributed to the previously discuss. jnear effect in the higher modes. The

variation of the damping and modulus with fiber orientation [7.75] is illu-

strated in Figure 7.29(a). The damping of the axially reintorced composite

appears to change slightly with temperature whereas the damping for the ±450

and 900 fiber orientations takes on the form of the resin damping (Fig-

ure 7.29(b)).

Kevlar/Epoxv Composites - The damping data f7.10, 7.75, 7.79] on Kevlar/

epoxy is summarized in Table 7.11. Initial damping meastirements were made on

free-free Kevlar cloth Style 181/epoxy honeycomb panels 17.11] with a ±450

fiber orientation in the face sheets. The damping data, included in Fig-

ure 7.30, indicated a higher damping for the panel with the thicker honeycomb

co-e. Core shear was not a factor. As a consequence some Kevlar/epoxy uni-

axial and cloth beams were tested in 1974 to see if the cloth affected the

damping. The results [7.10] are summarized in Figure 7.30 and average values

included in Table 7.11. There is reasonably good correlation between the

cloth beams and one of the honeycomb paneL.. The reason for the higher damp-

ing in the other free-free honeycomb panels remains unknown.

In general, there is good agreement between the measured damping of the

axial fiber reinforced Keviar composites, from the limited sources, with a

value around 0.006 being typical. The damping value of 0.0044 recorded in

Reference [7.80] appears to be on the low side as compared to the other data.
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Metal Matrix Composites - The measured damping data on metal matrix

composites is summarized in Table 7.12. Boron/aluminum, the first metal

matrix composite, appears to have a viscous damping ratio around 0.00038

17.751. The most comprehensive damping data to date, on later types of metal

matrix composites, is contained in References [7.811 and [7.82], the former

addressing the variation of the damping with frequency (Figures 7.32 to 7.34)

and the latter dealing with variation of damping with surface stresses at

ambient, 2000F and 400°F temperatures. The highest damping was measured in

the graphite/aluminum and graphite/magnesium composites with viscous damping

ratios of 0.00OV6 and 0.00067, respectively. The damping appears to be

constant with frequency. The damp'ng in the FP/aluminum and FP/magnesium

composites also appears to be constant with frequency, with viscous damping

ratios of around 0.00045. Some measurement problems were encountered at

higher frequencies [7.811 which may account for the subsequent rise in damping

above 1000 Hz for these materials The FP in these metal matrix composites

is Al203 fiber. The damping in the silicon carbide reinforced aluminum

composites continues to fall off with frequency similar to the Zener curve

with values as lcw as 0.C002 arcund 6000 Hz and as high as 0.001 around 10 Hz.

The graphite/AZ916-T [7.77] composites also exhibited a low damping with a

viscous damping ratio of 0.0004. The graphite/AZ916-Mg [7.77] had a higher

viscous damping ratio of 0.001 consistent with that expected from the Zener

curve for magnesium, as illustrated in Figure 7.35. The damping daLa in

Reference [7.831 for various metal matrix composites appears to be high. This

conclusion is supported by the comparison with the damping measured in Refer-

ence [7.771 for PIOO/AZ916-Mg composite. There appears to be a factor of six

difference. The damping of the aluminum beam also appears to be high.

7.2.4.5 Current Methods for Measuring Material Damping

The basic methods currently used for measuring the material damping in

buh metals and composites, in the low to intermadlate audio frequency range,

invo>ve resonant testing of thin beam type test specimens, either in flexure

or torsion. Longitudinal resonant vibration testing is generally used in the

highest audio frequency range while nonresonant testing is used in the lowest

frequency range, down to &!most zero frequency. Many of the test methods are
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discussed in References f 7.84', [7.851 and '7.86]. The basic resonant
frequency equation for many of the test specimens and the methods for correct-

ing these equation fo added masses, magnetic drive effects and some test
fixture effects are summarized iin Reference [r7.841.

The material damping in aluminim has been well established by experiment

(Figure 7.14) and is, in generjl, in good agreement with the theoretically

predicted damping (equation 7.9). Consequently, aluminum has [7.87] become

the standard reference material for evaluating and, indeed, calibrating test

methods used in measuring material damping.

Nonresonant Testing - The main problem with nonresonant testing is that

specified test fixtures [ 7.51] have to be developed to introduce the loads into

the test specimen without any friction or damping losses, especially when

testing very stiff metals. These problcms are less severe when testing th

much svfter polymer type materials [7.84]. The above test fixtures oft&.:

require the use of complex specimen shapes 17.511 that can be expensive -o

manufacture, at least in comparison to the more common beam type specimens.

The advantages are a highly controlled force level, and the ability to et.re

the material damping as a function of stress amplitude, especially in the

presence of a static load. Thus, the widest possible loading combinations cn

be used in the tests, albeit over a small frequency range.

Free-Free Resonant Flexured and Torsional Testing - The free-free beam

represents one of the most co-only used test methods for measuring the mate-

rial damping. The free-free be- test method requires only a minimal test

fixture, but is usoallv restricted to the lowcr dynamic strain region by the

availability of only a li:Mited input force level. This test method has

recently been extended into the higher dynamic flexural strain region by the

development of a controlled imp-ulst launch mechanism for the specimen.

In the simplest form of the free-free beam flexural test ,7.24], the

specimen is suspended at the nodal lines by two long vertical nylon strings as

illustrated in Figure 7.36a. The s-ecinen has a length to thickness ratio
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?vp;cly around 250 to minimize the effectLo traLnsverse shear on the

resoantfreuences ndin composite beams, or. the damping of the lowest

fleura moes.Theexctaton s povieethrough.ai coupling by a plate

m-autedparlle tothetest specimen and attached cc an electrodynamic

shaker.Theresons ofthe specimen is measures by a noncontacting optical

vibatin tansuce (OT)[7.241. The narmonic excitation is first tuned

-nto the resonant mode or interest and the Do-er: t te shaker is then open

circuited. The resulting single mode free decay response of the beam is

recorded either on a strip chart by means or anI ink Jet os-ciilograph (Fig-

ure 7.36(b)), or on magnetic tape for subsequent analysis on the computer.

Since the excitation is normal to the support direction, and since noncon-

cacting excitation1 and response transducer are used, all extraneous sources

of damping, except for acoustic radiation (air damping), have been eliminazed.

The beam is tested in its manufactured state withoat any added mass. Conse-

quently, the error in calculating the flexural n~odu.lus from the beam geometry,

density and m~easured resonant frequenc-V is al-so expe,:ted to be a -minimum.

h~owever, this test method can only be used in air due to the nature of the

excitation.

Maonetic transducers have also been used [75,7.60, 7.62. 7.841 to

excite free-free beam specirmens in material damping tests. These transducers

can be used down to near vacuum condition (Figure [7.62j, but require

small m-agnetic Steel targets to be bonkeu onorl-fenter r the beam, or to

thIe end of" the beam, on one side for flura -es-S an cm opposite sides and

corners for torsional tests [7.0, C= Jz UD n orpo-mtIpoe

V.841 can be used ro measure the beam V -!9n esponsc. Tile probes also

require thin steel or aluminuzl fci rarCt c_ 'D:bne nto the specimen.

Except for some possible magnetic effect the ae masses do not

elclect tne material damping of the bem -ot -. s b e accounted for, when

extracting the flexural Young's m.-ull '-mte -- re It-s, generally

recmended [7.841 that the ad-ded era s -- ent e mema

uteXU We" -h. Lightweight coil a31 ha.e.Iave a, so been

!e:i hemeasurement of the m - 'ee- dee eams ~I anda

i-free-free composite hone~comb panels 7i ailstted in i iu re 7.38S.
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This form of magnetic drive provides a negligible contribution to the material

damping in air and can also be used under near vacuum conditions.

The free-free test beams can also be mounted horizontally [7.58, 7.62,

7.24] supported at the nodal lines by two cotton or nylon string loops or by

two thin steel wires 17.84], or even mounted on two pol-urethare zaoam wedges

(7.23]. Care must be taken to locate these supports exactly at the nodal

lines since any relative motior between the supports and the specimen can

generate friction damping [7.84, 7.231. This type of support can aiso intro-

duce rigid body modes into the beam response 17.84', with frequencies high

enough to be mistaken for a flexural mode.

The final form of free-free flexural beam test involves the use of

impulsive type excitation. The most interesting test method '7.88] involves

Lhe use of a spring-cocked launcher, as illustrated in Figure 7.39. The

specimen is simultaneously excited and lofted into a vertical free-fall tra-

Jectory. that lasts about 1 second, by the above launcher. This launcher

_A LAUNCERM RA6 A UIG I

LOIAED flJSTtJON

igure 19 Test seuence te tunae exctin aunch -echansm

showinz the"ancher. sp-cieno anA signa1 wire carrier.
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permits, within limits, the elastic dynamic stress amplitude to be varied

while maintaining the same rigid body launch velocity. Dynamic stress levels

as high as 20 KSI have been measured in some specimens [7.29]. The dynamic

response is measured by two axial strain gages located in opposite sides at

the center of the test beam. The thin lead wires are supported, in part, by a

wire carrier which follows the vertical trajectory of the beam (Figure 7.39)

under computer control. The contribution to the material damping from the

lead wires is very small, as demonstrated by the good agreement obtained

[7.88] with other test data and with the theoretically predicted relaxation

damping to aluminum alloy. This test method overzomes the problem of support

damping and acoustic radiation damping, the latter through enclosure in a

vacuum chamber to simulate near vacuum test conditions.

The impulse head hamer tap method can also be used to measure the

damping of lajcger free-free test specimens that are supported by nylon string.

The resulting rigid body motion may take the specimen beyond the measuring

limits of noncontacting transducer. The use of a lightweight accelerometer

raises the question of lead wire damping. Unless a remote hamer tap mech-

anism is used, this method is also restricted to testing iv air.

Flexural and Torsional Resonant Testing with Fixed Supports - The test

specimens in resonant flexural tests can be a single cantilever beam [7.25,

7.26, 7.841 that is mounted in a rigid test fixture and excited by a magnetic

transducer, a double cantilever beam [7.27, 7.57. 7.58, 7.62, 7.67] (Fig-

ure 7.40) that is bolted t* an electrodynamic shaker or a single cantilever

beam that is attached to a cantilevered mass [7.81], which is in turn,

attached to an electrodynamic shaker (Figure 7.41). A typical rest set-up

[7,621, used with a double cantilever beam, is illustrated in Figure 7.42.

A tip mass can be added [7.81] to permit testing at lover frequenciez. The

electrodynamc shaker provides sufficient force to produce significant dynamic

stress levels in the cantilever test specimens. in the resonant torsional

tests. either one end or both ends of either a square 17.231, or a rectangular

[7.29, 7.841 test specimen can be clamped in a fixture. The test specimens

can be excited at the free end by tw magnetic transducers 17.841 located at
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METAL TEST SPECIMEN 17.261

S_.-ACCELEROMETER

PECIME LOWER CLAMPING BLOCK

SHAKER MOTION

TEST SPECIMEN INSTRUMENTATION 17.671

7.92 mm (0.312 in)
MPOSITE BEAM" POLYESTER MOUNTING SHOULDERS

,..19 mm (0.125 in) THICK .9 r0.312 in)

19 n (0.75 in) WIDE

COMPOSITE TEST SPECIMEN 17.671

Figurc 7.40. Typical double cantilever test specimens used in
measuring material damping.
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two opposite corners, or at the center, w:h two coil and magnet drive [7.22,

7.23] posit.Loned to provide a torque to t..e clamped-clamped specimen (Fig-

ure 7.43). A torsional pendulum [7.84] is used to test at lower frequencies.

The cantilever beam suffers from frictional losses at tf'e root, requiring

the use of special machined test specimens [7.27, 7.67, 7.81], for high stiff-

ness metals and composites, such as illustrated in Figure 7.40 and 7.41.

Similar test specimens are also us ,d in measuring the damping and Young's

modulus properties of viscoelastic damping materials as previously discussed

in Section 2.3.1 of this volume. The clamping is not so critical for tor-

sional test specimens because of the relatively low torsional stiffness of the

test specimens. The cantilever beam is also subjected to significant damping

from acoustic radiation as previously discussed. Consequently, the cantilever

beam test method should be used under near vacuum conditions when measuring

the material damping. The errors encountered in the above test methods and

means of estimating these errors are discussed in more detail in Refer-

ence [7.84].

_RFERENE [7.221

~DRIVE ~ CLAMP -

DRiVE COI

Figure 7.43. Driving arrangement for shear tests.
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More recently, impulse test methods nave been developed [7.79. 7.801 that

utilize remotely controlled hammer tap mechanisms with cantilever beams under

near vacuum conditions. Results, comparable to those from forced vibration

tests, have been obtained [7.79].

Longitudinal Resonance Testing - The longitudinal resonance cesting is

generally used to measure the damping in the high frequency range, typically

above 2000 Hz [7.59, 7.75). The short [7.84] or long [7.59] rectangular

specimen is excited at one end with a magnetic or piezoelectric transducer,

or a small explosive charge [7.591. The response is measured at the other

end by lightweight accelerometer, proximity probe, or condenser microphone.

The damping is obtaivec from the free decay of each longitudinal resonant

mode on termination of the harmonic excitation [7.84]. The Young's modulus

extracted by this method has to be corrected for i7.841 the added end masses

and, Jn the higher modes, for the lateral inertia rel.rt.d to Lhe Poisson's

ratio effect.

Resonance Testing Under Combined Loads - Three resonant ,cs u;.ethods have

recently been developed to measure the damping of materials .oer cCmbined

loading. The first two methods [7.72] [7.891. involvw the pli-ation of

combined dynamic'loads to the test specimen, whjle che third metnod 17.42]

involves the application of only a static tension l.)ad with a dynamic bending

load.

In the test method described in Reference [7.89], the combined dynamic

bending and torsion loads are applied simultaneously to a hollow cylindrical

test specimen by means of fout magnetic drives mounted on an inertia bar that

is clamped to the end of the test specimen (Figure 7.44). The magnetic drives

excite the specimen in a coupled bending-torsion mode. The mode shape can be

varied such that any combined loading condition, between all bending, no

torsion and no bending, all torsion, can be obtained. Dampirig data for six

highly damped metals, two alloys of manganese-copper and four grades of cast

iron, were determined from energy input during steady state vibration. Prior

combined loads test methods are also discussed in this reference.

7-83



F
[°
I

I OFFSET MASS

INFRTIA BAR

MOWINhG BAR

Figure 7.44. Combined loading apparatus [7.89]. ,

A test apparatus, Figure 7.45, is being developed [7.72], for measuring

the damping properties of rods also under combined dynamic torsiun and bending

loads. The rods in this test method can be pretwisted and/or pretensioned.

Oscillatory torque and bending forces are applied through a central inertia

bar by two concentric coil and magnet drives.

The final test method [7.411 is designed to measure the damping of

turbine blades under~a simulated centrifugal force. The test specimen consists

of a pair of turbine blades that are welded at the tips (Figure 7.46) and

installed in the loading frame by the fir tree roots. The axial load is

applied by pressured load cells. The whole test fixture is enclosed in an

environmental chamber. The specimen is excited, in both the lateral and

tangentisl directions, by a remote striker. The damping is determined from

the free decay by means of the compuzer aided data acquisition system illu-

strated in Figure 7.47.
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Figure 7.47. Computer aided data acquisition system.
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7.3 DAMPING LEVELS IN AEROSPACE STRUCTURES

The damping levels, primarily in Iiahtwei!ht aerospace structures, are

reviewed in this section. The most common type of structure consists of

riveted multi-bay stringer-and-frame-stitfened aluminum panels [7.12, 7.15,

7.90. 7.91, 7.92, 7.931 and single bay stiffened aluminum honeycomb panels

[7.12, 7.90, 7.911 u .ed primarily in secondary aircraft structures. Damp-

ing data are also _vaiable for stiffened curved panels [7.901, corrugated

and beaded panels f7.94, 7.95, 7.961, integrally machined panels in built-up

structures [7.90, 7.911, chemically milled panels [7.90], bonded skin-

stringer multi-bay aluminum panels [7.97, 7.98], Lorded [7."9' and inte-

grally stiffened [7.13, 7.1"O composite multi-bay panels, stiffened composite

honeycomb panels [7.10, 7.11, 7.1011 fastener attached composite [7.1021 and

aluminum [7.92, 7.1031 box structures, weldbond panels and composite rudders

[7.1041, and trai.ing edge wedges [7.90, 7.911. The damping data for the above

structures havi been obtained mostly during sonic fatigue tests. Damping mea-

surements have also been made on stiffened fuselage shell structure [7.1061

aitd st.iffened rylinders, with and without the acoustic trim 7.107], in con-

nection with interior noise studies. Dita on the effects of fluid ioading on

the damping of shells [7.1081 and stiffened panel type structures [7.109] are

available. Damping also plays ati important part in the design of structures

as diverse as engine components [7.110, 7.111) and circuit boards (7.1121 in

electronic boxes to name a few. Damping levels in spacecraft vary from space--

craft-to-spacecraft. Typizal spacecraft damping levels have been previously

discussed -in Section 7.2.2.1 and will not be included in this section.

The damping data are usually presented in the form of a graph of viscous

damping ratio as a function of frequency, for each struictural configuration,

plotted on a log-log graph such as illustrated in Figure 7.48 for skin-

strirger panels. On account of the past emphasis on predominant single

fundamental mode response in acoustic fatigue studies, most of the damping

data recorded in literature for skin--stringer and other stiffened panel type

structures is only for the fundamental moce. Some higher mode damping data

may also be included in the above damping-frequency plots.
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Figure 7.48. Measurd viscous damping ratios for flat

skin-stringer panels

Some damping measurements have been made at high dynamic strain levels

[7.95, 7.113] where nonlinear panel response is encountered. When the 3 dB

bandwidth zethod is used to extract the damping data from the power spectral

-density of the panel strain response, obtained during high level random

excitation tests. higher than actual damping values are obtained [7.113].

These damping -values do not correlate with the root mean square (rms) strain

levels, measured duriig the same random excitation tests, when attempting to

curve fit test data to simplified theory 1-1.114). In previous studies [7.121,

reasonable correlation was obtained between the measured rms strains and

damping values obtained at low excitation levels, in spite of the simplicity

of the theory used in the curve fit. The measured damping values are degraded

by poor signal-to-noise ratios, providing a further temptation for using

higher excitation levels. The analysis bandwidth used in the spectral analy-

sis of the strain response must also be sufficiently narrow to avoid smoothing

7-88



errors, as discussed in more detail in Section 6. Acoustic edge conditions

can also affect the damping measurements, as can the method of mounting the

panels in the test facility. It is, therefore, not surprising chat the

measured damping data are characterized by a large scatter such as illus-

trated in Figure 7.48.

The one-over-the-frequency type variation, assum2d in the least squares

linear curve fit to the test data in Figure 7.48 and, indeed, to the test data

for other panels [7.90], as illustrated in Figure 7.49, is based on the varia-

tions of the viscous damping ratio with resonant frequency that is predicted by

the single degree-of-freedom system response theory [7.901. The author of

Reference f7.90] joked, when presenting the original damping data for these

structures, that there is an equal justification for drawing a horizontal line

through the damping data. This comment was received with appreciative laughter.

Little did he know how close to the truth he came.

The damping data for stiffened aluminum and composite honeycomb panels

is discussed first in the following section since some recent work [7.10,

7.47] has thrown a considerable amount of light on the nature of the damping

in these structures. Honeycomb panels have the advantage over skin-stringer

panel arrays in being tested one panel at-a-time, on account of their rela-

tively large size. The modes are usually well separated and clearly defined.

Consequently it is much easier to see modal trends with these panels than

with stiffened multi-bay type panels.

7.3.1 Damping in Stiffened Aluminum and Composite Honeycomb Panels

Most of the available damping data for alumirnum honeycomb panels [7.121,

composite honeycomb panels ['.10,7.11] and honeycomb rudder wedges 17.90, 7.91)

are sut arized in Figure 7.50. The damping data for the composite honeycomb

panels and the rudder wedges also contain higher order modes, in addition to the

fundamental mode. Lines can be drawn through these data in the traditional

manner to indicate the trends with frequency. There are in fact several trend
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lines, dependent on the type of honeycomb panel (Figure 7.50). The trend lines

are different even for the three types of composite honeycomb panels tested

[7.47], as illustrated in Figure 7.51. if only the funda-ental mode damping

is plotted against frequency for both the composite and aluminum honeycomb

panels, a constant variation of the damping with frequency is obtained [7.47],

as illustrated in Figure 7.52. The damping is the same for the graphite/epoxy

and the aluminum honeycomb panels while that for the Kevlar honeycomb paneib

is higher, reflecting a significant contribution from the material damping

[7.10]4 The above result is consistent with the fact that the dominant contri-

bution to the honeycomb panel damping is due to acoustic radiation [7.10, 7.111

as previously discussed in Section 7.2.1. The difference in the fundamental

mode frequencies between the composite aid aluminum honeycomb panels are due to

the use of thicker honeycomb corcs in the alumin.v honeycomb panels. Although

the damping is the sum.e for the fundamental mode of the graphite/epoxy honey-
comb panels, differences in the higher order mode damping (Figure 7..2) start
to appear due to different stiffness characteristics of these honeycomb panels.

Although the daming of these panels can now be predicted [7.101 reason-

ably accurately (Figures 7.2 and 7.3), scatter is still present in the test data

that cannot be explained by theory alone. It is reasonable to assume [7.47]

that the mechanisms responsible for producing, for example, an above average

damping in a panel fundamental mode, will also contribute to the above av:rage

damping in the higher order modes. On this basis there would be a great

advantage in being able to predict the damping in the higher modes based on the

damping and frequency in the fundamental mode, especially if the expression for

the damping is relatively simple. Such a theory has been developed in

Reference [7.471.

7-92



Oi[ IPANEL FACE S~KETIiNUMBER MATERIAL

-4 MOOUUJS ME-P

o 8 ULTRA-WG
* 11I MOtUJS GRIP

0

C

rKODIC -I.

F Me sure fun amen aII a -iher ode am~inrnslce oooie!oec-bDn'
1=1-9



_ _ _--_--~~~

0.10 I , ' I I ! II ' '
1

0 ALUMINUM I
6 INTERMEDIATE MODULUS j

GRAPHITEIEPOXY
0 ULTRA-HIGH MODULUS

GRAPHITEIEPOXY

* KEVLAR

0 0,~ ~~ ~ ~~ 0 00%o°o° ° ... ,0o.

o 0 *(MODE 3, 1)

Eo ... (3PMODE 3, 1

Cr 0.01 001 j
W A

0.001 .*1** *_[ ****, I ,I
50 180 500 1000

FREQUENCY - Hz

Figure 7.52. Actual mersured variation of fundamental mode
damping with frequency fof stiffened honeycomb
pa-els.

7-94



The viscous damping ratio for the m,nt" honeycomb panel mode is given, in

the most general form, by [7.47]

= (ll -M - 4F)(fm " + + + F (7.11)

where

=mn m~n th mode viscous damping ratio

= fundamental mode viscous damping ratio

M= contribution from material damping

cF= contribution from friction damping of the rivet line
th

f = m,n mode resonant frequency

f 1 I fundamental mode resonent frequency

The friction and material damping used in the analysis of the honeycomb panels

[7.-7], are summarized 4 Table 7.13. The degree of correlation achieved in

predicting the higher mune damping, based on the fundamental mode frequency

and damping, is illustrated in Figure 7.53. Means of improving this correla-

tion even further are discussed in Reference j7.47]. This method represents

a significant improvement over the current damping-frequency plot approach.

Advantage can also be taken of the existing fundamental mode data. This

method has also been extended to skin-st-inger panel arrays as discussed

in the following section.

TABLE 7.13. VALUES OF FRICTION AND MATERIAL
DAMPING ASSUMED IN HONEYCOMB
PANEL ANALYSIS

Honeycomb Panels 'F

Aluminum 0 0

Graphite/Epoxy 0 0

Kevlar 0.008 0
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7.3.2 Damping in Riveted and Bonded Multibay Metal Panels and Box Structures

The damping in, basically, the fundamental mode of riveted [7.12] and

bonded [7.97] multibay aluminum panels, riveted multibay aluminum panels

[7.92] and box structures [7.92, 7.103], and riveted multibay titaniun and alu-

minum panels [7.93], are illustrated in Figures 7.54, 7.55 and 7.56, respec-

tively, as a function of resonant frequency [7.47]. The constant damping trend

line with frequency is the same in each figure, and based on the riveted panel

data in Figure 7.54. This trend line represents a good fit to the test data in

Figure 7.55 and is slightly on the low side for the data in Figure 7.56. Based'

on these results, it was concluded in Reference [7.47] that the damping in the

fundamental mode can be considered to be essentially constant with frequency,

confirming the result previously obtained with stiffened honeycomb panels. The

constant fundamental mode damping trend line for flat skin-stringer panels

appears to be equally applicable to curved skin-stringer panels as illustrated

in Figure 7.57. The fundamental mode damping for built up structures with

integrally machined skins (Figures 7.58 and 7.59) and with corrugated and hat

stiffened skins (Figure 7.59) is also constant with frequency. The damping is

lower for the integrally machined skins and higher for the corrugated and hat

stiffened skins than the average damping for the skin-stringer panels. It can

therefore be concluded that the concept of a constant fundamental mode damping

with frequency, developed in Reference [7.47), is valid for a wide range of

stiffened panel type structures.

A method for predicting the damping of the skin-stringer panels was also

developed in Reference (7.47]. The damping of these panels is due primarily to

friction damping at the fastener line and acoustic radiation damping. The

acoustic radiation damping, as indicated in References [7.14] and [7.15], can

be predicted by the simple theory, described in Reference [7.31, if double

sided acoustic radiation is used. The acoustic radiation viscous damping ratio,

a, for a simple supported panel that is mounted in a baffle, is given by

7-97



o BONlIE (7,971
* WVETED 17.121

0

F

C

i-

I

50 100 500 1000
FPEIUVPCY - Hz

Figure 7.54. Variation of the measured damping in the fundamental
mode of TiVeied and bonded multi-bay skin-stringer
aluminum panels with frequency.

7-98



+ BOX SPECIMEN 17.92) * MULT!-BAY PANELS 17.921
0 o BOX SPECIMEN (AVERAGE VALUES) 17.1031

0.05

I +
+ +

" 0.01 +-- *+ +,

0.005 1 j
60 100 200 300

FREOUENCY - Hz

Figure 7.55. Measured damping in aluminun multi-bay panels
and box specimens.

7-99



A/LUMINUM X TITANIUM

0.OF SREFERENCE 17.931

0.94

x

x x

S0.02 of

_ 0 xx

0.01 -

50 100 200 300 400 500

FRfzT UFNCY - Hz

Figure 7.56. Measured damping in aluminum and
titanium multi-bay panels.



101 -- NEW METHOD - OLD METHOD

S10-3'
10 z S t12 2 2 4 5078"0

FREQUENCY - Hz

Figure 7.57. Curved skin and stringer panels.

10-2
Ti

0-L

10 1 'St 0 2  1 4 5 140 103  1

FREQUENCY H.7

rigure 7.58. Built-un structures wit", ite-ral'v mach1Ined s'ins.

7-101



L

* CORUGA1ED C BUtT UP WEGRALLY

STFEN4E

0.05 o HAT STWENED RFEMNCE (7.96)

0.04 -

0 _

, 0.03

" 0.02 - .'o

ca
C

0

0

0.005 1J L L1
50 100 20 300 409500

FPOtNENCY - Hz

Figure 7.59. Damping in hat stiffened, corrj&ated and built-up
integrally stiffened panels.

7-102



64 P f n a ba 4 cM2(7.12)

where

0 = density of air

c = speed of sound in air

f = natural frequency of the m,nth moden

M = panel surface density

a,b = panel length and width

m,n = mode number in the length and width direction,respectively

The above equation provides the basis for the expression for the viscous damping

ratio in equation 7.11. It must be pointed out that the variation of the

higher mode dawping with frequency is not a simple one- =--the-frequency

relationchip. In the case of riveted panels, the relatio,._nip is further

modified by presence of friction.

Experimental evidence indicates that friction damping is both constant

with frequency and velocity 17.281 and independent of the load amplitude at the

fastener line 17.191. Consequently, it was concluded, in Reference 17.47],

that the friction damping at the fastener line is dependent only on the number

of fastener along the panel periphery. The viscous damping ratio of 0.0085,

measured in a panel array under near vacuum conditions, was asstmed as a refer-

ence value for the friction damping. As a consequence the following semi-

empirical equation was developed 17.47] for the friction viscous damping ratio

"'F:

s(a+b)
0.0253 S (7.13)" ab

whrc s is the number of fasteners per inch, and all the Other dimensions are

in in, hes. The above value of 0.0085, used in deriving equation 713. cas vary

in practice from panel to panel depending, for example, on the qualit% of the

.;brfcation. This val.u could be as low as 0.0034, as previouslv measured on

an unbaffied curved panel arrav !7.i15j.

7-103



The viscous damping ratio mn for the m,nth mode of a single panel is

given simply by

a 4F (7.14)mn = a + C F + CM (.4

where is the material damping. The above equations can be applied to

single panels vibrating in a panel array. Most of the multi-bay test panels

consist of 9-bays with a large center bay. Thus the dominant response tends

to occur in the center bay vibrating alone. For a panel array with equal panels

equation 7-12 has to be modified to account for the number of panels vibrating

in-phase and out-of-phase in the panel array [7.47). If all of the panels are

vibrating in phase, then equation 7.12 can still be used, since the damping in

each panel will be the same.

The degree of correlation achieved [7.471 in predicting the damping of

both riveted skin-stringer and bonded panels using equation 7.14 is

illustrated in Figure 7.60. In this correlation, the material damping 4m

was assumed to be zero for both panels and the friction damping r was

assumed to be zero for the bonded panels. The correlation appears to be

very promising. The variation in the damping of higher modes, as predicted

by equation 7.14 with E, equal to zero, is illustrated in Figure 7.61. The

old trend line (Figure 7.48) is included in Figure 7.61 since it may have been

influenced by the presence of higher modes in the data. The old trend line

appears to fit the data a!though there are higher order modes, Such as the

(1,3) modes, that have a viscous danoing ratio almost as high as that in the

fundamental =ode. This result is due to the influence of the acoustic radia-

tion damping which tends to increase with fk'equet-cv, even in the fundamental

mode.
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Since a lot of experimental data ere available for the damping in the

fundamental mode of many structures, it is more convenient to use these data

to predict the damping in the higher modes rather than to perform the acoustic
radiation calculation. This approach is based on equation 7.11, by assuming

that the form of this equation is applicable to most stiffened panel structures.
Ale vr.lue of jF must be first calculated from equation 7.13, with m and n

equal to one for fastener attached panels, and also for the corrugited par.els,
although these latter panels may have a greater frictional damping. The

friction damping is zere for integrally stiffened and bonded panels.

7.3.3 Damping in Bonded and Integrally Stiffened Multi-bay Composite Panels

and Fastener Attached Box Structure

The prediction of the damping in bonded and integrally stiffened composite

panels is simplified by the absence of friction damping. Except for some

material damping in Kevlar compositez, the damping is due entirely to acoustic

radiation damping [7.13, 7.14]. The critical iten It: predicting the damping

is therefore the number and the size of the panels in the panel array, since

they affect the vibr&tion response of the array. The mode shape is very
critical, as can be Illustrated by comparing the damping (Figure 7.4) from

an integrally blade stiffened panel [7.1-3, 7.1 with a large center bay that

is vibrating by itself in the fundamental mode (Figure 7.62), with the damping
(Figure 7.63) of an integrally J-stlffened panel [7.13. 714) with nearly

identical bays, all vIbrazinpg out of phase (FIgure 7.64) In the fundmental

mode. The viscous da-ping ratio Fredicted by equation 7.12 for the fundamental

mode, should be closer to 0.01. if all the panels are assumed to have equal

mode ahapes, instead of the viaeris d--ing ratio of approxistely 0.005

(Figure 7.63) acrualy masured. The difference Is due entirely to thc mode

shape. The trend line for the damping of the composite panel in Figure 7.63

is due to the presence of higher modes.
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Figurea 7.62. Fundamental mode shape of integrally blade
stiffened graphite/epoxy minisandwich panel.

The damping measured on a composite aileron box structure [7.102] is also

incinded in Figure 7.63. Thus . e acoustic damping in composite structures

can be very low, but predictable by acoustic radiation theory, at least for

simple skin-stiffener type panels. Other dmaping data for bonded skin-

stringer [7.991 and integrally hat stiffened [7.100] composite panels are

contained in Tables 7.14 and 7.15, respectively.

7.3.4 Damping in Stiffened Panels under Inplane A-xial, Tension, Compression
and Shear Load

The effect of axial inplane tension and com, ;ion loading on the damping

of a stiffened aluminu panel has been studied as part of an investigation into

the crack growth of stiffened panels under combined loading [7.181. The varia-

tion of the unbaffled panel damping with axial inplane load is illustrated in

Figure 7.5. The damping renains constant with tension loading but increases

with compression loading on ap. roaching buckling. The damping in the compres-

sion region is nonlinear, as indicated by a different decay late with amplitude

measured wJth the free decay method.

Fuselage panels are often designed to be near buckling at one g. Consider-

able interest was exprussec In determining the effect of acoustic ioading, from

the close proximity jet enginv cxhausts, on these fuselage panels. A three-bay
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structure assembled with fasteners.

integrally J-stiffened monolithic and minisandwich graphite/epoxy panels were

tested under combined acoustic and shear Ljading 17.20] to study this problem.

The variation of the resonant frequencies and the corresponding viscous damping

ratios with shear load through buckling was determined. The variation of the

resonant frequency and viscous damping ratio with shear load are illustrated

in Figures 7.65 and 7.66 respectively for the minisandwich panel. The damping

in the critical 2,1 mode increases very rapidly on approaching buckling. The

damping in the noncr~tical modes is also increased on approacting buckling,

as illustrated in Figure 7.67 for the monolithic panel, even when a much higher

order panel mode is the critical mode.

7.3.5 Dami n in Stiffened Cylinders

The damning in stiffened shells 'has been measured in connection with

interior noise studies [7.105, 7.106, 7.1071 on aircraft. The damping data

measured on a bare Metroliner fuselage, on a bare L-1011 rear fuselage and a

small diameter stiffened shell, both with ard without interior acoustic trim,

are illustrated in Figure 7.68 as a function of frequency. The damping data
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Figure 7.64. Fundamental mode of integrally J-stiffened
graphite/epoxy panel.

TABLE 7. 14. MASUREI) DAMPING IN BONDED GRAPHITE/EPOXY PANELS

Frequency I Viscous Damping
Panel Hz IRatio - J;

A-66-Bl 167
184 0.023
219 --

233 0.014
277 0.017
343 0.017

A-66-B3 1170 1.013
I288 --

S348 1 001
517 0.016

I ____________1563 0.016

Reference 17.991.
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for all of these bare shells appears to collapse onto -a single line. This

trend line decreases with frequency since many shell modes are involved.

Another interesting result is that the acoustic trim, evrn when not in contact

with the shell, increases the shell damping significantly.

v.3.6 Effect of Fluid iading on Stiffened Panels

A study was conducted 17.1091 to measure the damping of a hull ranel, in

a motor torpedo boat, both in air and in contact with water. The structure

consists of T stringers and frames welded to the hull skin. The measured

damping is illustrated in Figure 7.69. The interesting result is that there

is virtually no difference in the damping of the panel when in air or in

contact with the water. There is a shift in frequency due to the combination

of mass loading and hydrodynamic pressure 17.1091. This result is important

when investigating fuel slosh loading in outer wing tanks and in liquid fuel

rockets.

7.3.7 Measured Damping in Jet Engine Components

Jet engines often use welded components, which have very low damping, ard

as a consequence often experience failures due to excessive vibration. Typical

damping levels measures on a variety of components are simarized in Table 7.16.

These data have been obtained from the examples and case histories in Section 6

of Volume It of this design guide. The low damping levels and the high fre-

quencies are self evident.

7.3.8 Printed Circuit Board Damping

Amotber area of interest that can affect the reliability of tue avionics

is the vibration and, indeed, the damping in printed circuit boards (PCB's).

Reference [7.1121 is devoted to the design of circuit boards to minimize the

possibility of failure in electromic components mounted on the PCB's from

vibration. A range of measured circuit board danping levels are included in

Table 7.17 together with an empirical equatioa for estimating the dzmning.
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TABLE 7.16. MEASURED DAMPING VALUES FOR ENGINE COMPONENTS

Frequency Viscous Damping

Description of Structure lz Ratio-

TF-41 Jet Engine Inlet Extension 3140 0.0011 to 0.0027*

RF-33-P3 TurboJet 1000 to 5000 0.0012 to 0.0023*.Tn.'ine ' lded ilet

;(ares (IAV7 :fIdU Shrouds

> lsine Reatr Mount Rit; 374 0.0037
403 0.0033
903 0.0045
1172 0.0030
1396 0.0037
3515 0.0040
4325 0.0049

TF-30 Jet Engine Welded 3000 to 4000 0.0009 to 0.0018P
Titanium Guide Vanes

Helicopter Turbine Engine 50 to 500 0.0005 to 0.005
Exhaust Stacks

Jet Engine Turbine 746 Bending 0.001 to 0.002
Blade 824 Torsion

Exducer - Turbing 5300 0.0022 to 0.0039*
Blade Assembly 8500 0.0009 to 0.0014

*Damping varies with temperature
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1ABLE 7.17. TYPICAL RANGE OF MEASURED PRINTED CIRCUIT BOARD
DAMPING VALUES

Frequer -y
f Q K Reference

65 0.0142 35 4.3 7.116

165 0.023 22 1.71 7.116

215 (2g's input) 0.033 15 1.023 7.112

182 (5g's input) 0.045 11.2 - /
161 (lOg's input) 0.061 8.2 -

Empirical relationship 17.112]

Q K (f n )1/2 K nz 0.5 2 Typical

I Input 2g's and less
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SECTION 8

EFFECT OF DAMPING ON INTERIOR NOISE IN AIRCRAFT

8.1 I NtRODUCrTON

The primary purpose in this section is to discuss the possibility of

reducing interior noise in aircraft by increasing the damping of the fuselage

structure through the application of viscoelastic damping. Increasing the

fuselage damping by this means has been tried before many times. In most

instances the expected interior roise reductions did not materialize. Some

recent developments [8.1. 8.21 have thrown some light on the possible reason

for this discrepancy.

A brief re:iew of both the interior noise sources in aircraft and the

important parameter in the basic noise transmission loss theory are included

in Section 8.2 as an introduction to the subject of interior noise in aircraft.

The effect of the acoustic trim on the damping of aircraft structures is dis-

cussed in Section 8.3 together with a discussion of test procedures use to

verify the performance of the viscoelastic damping treatment in reducing

interior noise. The topic is concluded by a brief sammarv of recent develop-

ments in aircraft interior noise prediction methodology in Section 8.4.

8.2 TERIOR NOISE IN AIRCRlUFT

8.2.1 Sources of Interior Noise

The main in-flight source of interior -oise, in turbojet and turbofan

powered transport aircraft is due to turbulent boundar" Saver exita.'ton of

the fuselage shell 8.1, 8.3. 8.41 although some contributions v: h--e btaln.,d

in the rear ft-ielage from iet exhaust noise 18.5j. Jet noise is a dominant

noise source during ike-off. especiailv i-n high-powered illtarv aircraft

18.6', and in other parts of the aircraft during landinc, when reverse thrust

Is used. Both of these woise sources are broad band in nature. and. therefore.

capable of exciting structural resonances.
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In propeller driven aircraft, the noise generated by the propellers is

usually the domineni noise sources although engine exhaust noise may provide

a significant contribution to the interior noise in the aft cabin of some

light general aviation axrcraft [8.7, 8.81. The propeller noise tends to be

tonal in nature, concentrated primarily at the blade passage freauency and, to

a progressively lesser extent, at the highcr harmonics. Large turboprop air-

craft also tend to emr loy cora.tant speed (revolutions per second) propellers

[8.91 with fixed excirttion frequencies.

Recent studies (8.91, have indicated that structure borne noise, in the

form of engine vtbration, can be transmitted to -he fuselage through the wing

struLt: re. Synchrophasing the engines, in multi-engined turboprop aircraft,

can reduce this noise. Th- propeller wash srrtking the horizontal stabil4zer

cail be a further source of interior noise [8.9). Jet engine vibration, trans-

mitted to the fuselage via the engine support structure, has produced signifi-

cant interior noise problems t8.10] In the past.

Localized interior noise can be nroduced by equipment mounted in aircraft.

localized areas of supersonic flow, and critical tcoustic spinning modes in

large fanjet intake ducts that are attached to the fuselage.

8.2.2 Basic Noise Transmission Loss Theory

The basic noise transmission loss theonr .as developed with plane wave

acoustic excitation, impinging on an infinitepanel (Figure 8.1)1 at angles of

incidence between near-grazing and normal. Th transmission loss. due to a
&everberent acoustic field, can be obtairte s'iy weragi3 the plane ave

-::ect ,ver all angles of inuidence. i-- - -r fg incidence. the

reverberent acoustic field is readilV rtproduted in current test facilities.

The current test facilities, typicalv, consist of a reverberent source

room and i reverberent receiving room that are separated by a high transmis-

sion loss comon wall containing an aperture for the test panel. The trans-

mission loss, TL, of the finite test nane:. n. unted in thc aperture. is ,iven

by 18.111
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Figare 8.1. Plane acoustic wave incident on a panel

TL a NR + i0 loglO ( ) (8.1)

where M is the noise reduction of the panel, S is the area of the panel, and

A Ls the absorption of the receiving room, usually determined from the rever-

beration time. T-w aoise reduction is defined (R..I11 as the difference

• between t.he space arad time averaged raadom broadband noise measured in the

source ram- and the space and time averaged transmitted sound measured in the

receiving room. It Is customary tG prezent the transmission loss in one-third

octave bands. The effects of the acuustic trim and viscoelastlr da-mping can

be deter-m-ined by the difference In the m.asured noise reductlon, berueen the

treazed and umtreated pane;.
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The above noise transmission loss measurements involve the use of finite

panels. The transmission loss curve for a finite panel (Figure 8.2),.excited

by an acoustic plane wave that is incident at an angle 6 to the panel (rig-

ure 8.1), is characterized by a low frequency stiffness controlled region, a

resonant response region, a mass controlled region and a coincidence region,

in ascending order of frequency. The transmission loss in the resonant

response and the coincidence regions can be reduced by increasing the damping

of the panel.

Resonances are introduced into a finite panel, by the initial flexural

waves combining, at the same phase, with the flexural waves reflected by the

panel bounearies, to set up standing f]exural waves within the panel at each

of the resonant frequencies. Coincidence is obtained when the trace wave Atr

of the acoustic wave (Figure 8.1) matches the flexural wave length iri the

panel at the same frequency. The frequency at which coincidence is obtained,

is known as the critical frequency (f C).

8.2.2.1 Infinite Panel Transmission Loss Theory

There are no resonances in an infinite panel, although coincidence can

still be obtained. The panel, in fact, behaves like a limp wall, obeying the

mass law up to the coincidence region. This behavior simplifies the noise

transmission loss analysis. The resulting infinite panel transmission loss

equations have proven to be quite accurate fn predicting the finite panel

transmission loss, above the resonance region.

The transmission loss is determined from the transmission coefficient

T(8) [8.12, 8.13], which is defined as the ratio of transmitted acoustic power

';z incident acoustic power on the structure. The transmission coefficient for

'n infinite panel, that is excited by an acoustic plane wave at incidence 8 to

the panel, is given by the relationship
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_ Ptl 4 ine

+ Cos I -D Sin4 8 (8.2)
L1( I ci 4 ]

where pi and pt are the amplitudes of the incident and transmitted pressure

waves, respectively; w in the circular frequency; fn,D and 11 are the loss

factor, the fluexural stiffness and the surface density of the panel,

respectively; p is the density of the air; and c is the speed of sound in

air. The transmission loss, in dB, is expressed simply by

1

TL = l0logy y (8.3)

The noise transmission loss in the mass controlled and coincidence

regions are obtained by substituting equation 8.2 into equation 8.3. At

coincidence, the noise transmission loss equation is reduced to

TL = 20 log I +n( c Cose)] (8.4)

The transmission loss at coincidence is controlled entirely by the loss

factor n. The critical frequency, used in deriving equation 8.4 from equa-

tiors 8.2 and 8.3, is given by [8.12, 8.13]

2
f c 2(8.5)
c 27tSin 2O ID I

Below the critical frequency, the transmission loss is approximated by the

mass iaw; that is, by
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TL 10 log [i + Os802 (8.6)

The transmission loss in this mass controlled region is not affected by the

panel damping.

The normal incidence transmission loss is given by equation 8.6, when

Cose - 1. For the reverberent acoustic field, often used in noise transmis-

sion loss studies, the transmission coefficient T(e) in equation 8.2 is

replaced by an average transmission coefficient T, defined by

780

- o T(O) CosO Sine d6
Sf78 CosG Sine de (8.7)

0

where the 780 limit provides the best fit to the test data. The noise trans-

mission loss equation breaks down when 0 approaches 900. The transmission

loss calculated with the average transmission coefficient is known as the

field incidence transmission loss.

The above infinite panel noise transmission loss theory predicts the

noise transmission loss of aluminum panels (Figure 8.3) and, in a slightly

modified form [8.14], of composite panels (Figure 8.4) with good accuracy.

The addition of acoustic trim increases the noise transmission loss even

more (Figure 8.3). For an ideal double wall partition, i.e., with equal

weight unconnected walls, the transmission loss increases at the rate of

12 dB/octave in the mass controlled region, above the double wall resonance

[8.131.
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PREDICTED TL BARE PANEL

SKIN THICKNESS 0.070 INCHES AND WEIGHT DENSITY 172.00 LBIFT 3

AIRGAP THICKNESS 1.00 INCHES
SEPTUM SURFACE WEIGHT DENSITY 0.01 L8/FT2

POROUS BLANKET THICKNESS 2.00 INCHES AND WEIGHT DENSITY 1.20 LB!FT3

SPECIFIC FLOW RESISTANCE 68.00 CGS RAYLS/IN
SEPTUM SURFACE WEIGHT DENSITY 0.01 LB/FT 2

Figure 8.3. Panel transmission loss both with and

without acoustic treatment
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Figure 8.4. Transmission loss characteristics of graphite/epoxy
mini-sandwich panel with a 1mm thick syntactic core

8.2.2.2 Radiation Efficiency of a Panel

The critical frequency is important also for another reason. At and

above the critical frequency, the panel becomes a very efficient radiator of

sound [8.13], with a radiation ratio, arad" above unity at the critical fre-

quency, and tending to unity, above the critical frequency. The radiation

ratio is defined as the power radiated by a plate into a half space divided

by the power radiated by an infinite rigid piston into the same half space,

both vibrating with the same root mean square (rms) velocity. For a finite

panel, the acoustic power WA radiated by a set of resonant panel modes within

a frequency band, can be expressed by

WA = arad pcS <v2 ((-)> (8.8)
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where S is the panel area and <v2 (w)> is the space-time average of the panel

mean square velocity within the frequency band, centered at a circular

frequency w. Typical variation of the finite panel radiation ratio (8.15]

with normalized frequency is illustrated in Figure - 5. Noise is also radi-

ated by these resonant modes below the critical frequency. This noise is

produced by uncancelled acoustic radiation, emanating primarily from the panel

boundaries [8.15, 8.161. The radiation efficiency of this noise is, however,

very low below the critical frequency. In the near field, within about half

a wave length from the surface of the panel, these panel modes can still

produce very intense sound pressure [8.13], in spite of the cancellation

effect.

20

cc 0 )

-20 _ _ _ _

0.1 2 3 4 5 6 7 8 91.0 2.0

FREQUENCY RATIaffI

Figure 8.5. Typical radiation ratio for a baffled panel- as a function

of frequency normalized to the critical frequency
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8.2.2.3 Transmission Loss Characteristics of a Stiffened Panel

The typical field incidence transmission loss of a large metal panel,

that is stiffened by frames and stringers [8.16, 8.171 - i :bjected to a rever-

berent acoustic e~rcitation. is illustrated 11 Figure 8.6. The noibe trans-

mission loss, at Lhe lower frequencies, can be calculated by the single panil

field incidence transmission loor equation applied to the whole panel in which

the weight of stringers and frames are averaged over the area of the panel and

added to the skin weight per unit area [8.13, 8.17]. The lowest vibration

frequencies are ,-6ually controlled by the stiffness and mass of the frames

which are a=sumed to be simply supported at the panel boundary. Above the

fundamntal panel resonant frequency, the field incidence transmission loss

drops to that of the unstiffened panel.

50

MEASLNME

4 - FE0 C E MAW LAW4 - --- - M ODAL T HEO" 0K

~ONL

20 -

fc - 15,2501H

.1 1 i0 20

ONE-THMD OCTAVE BAND FREOUENCY - kIz )

Figure 8.6. Field incidence transmission loss

of a stiffened flat panel [8.17]
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8.2.3 Behavior of Stiffened Aircraft Panels

The noise transmission nhenomenon becomes more difficult to visualize

when dealing with more complex structures. Analytical methods for predicting

the noise transmission into trimmed aircraft fuselage structure are still in

the process of tvolution. Before discussing the noise transmission character-

istics of more complex stiffened shell structures, it is necessary to under-

stand how the acoustic plane wave excitation relates to the actual environment

on aircraft, and how the stiffened panels on aircraft behave in response to

these environments.

The acoustic plane wave can be used, with the appropriate noise spectrum,

to model both the random jet noise and the harmonic propeller noise directly

by the use of the appropriate angle of incidence for the plane wave relative

to the surface of the fuselage. Grazing incidence acoustic plane wave excita-

tion also reproduces some of the characteristics of the turbulent boundary

layer excitation, although there are differences as to their effect on the

structural vibration. The acotqtic plane wave tends to be more efficient in

exciting the lower frequency panel modes than turbulent boundary layer. The

reverse is true for the higher frequency mods where the structural wave

lengths provide a be-tter match with the turbulent boundary layer wave lengths.

The boundary layer characteristics are, themselves, dependent on the frequency,

boundary layer thickness and aircraft speed. In spite of these differences,

some conclusions, based on near-grazing iucidence acoustic excitation, are

also applicable to turbulent boundary layer excli..ztion.

The fuselage structure, in general aviation and transporL aircraft,

usually consists of panels supporced by open section frames and stringers.

The lighter stringers usually run parallel to the fuselage axis. Experimental

evidence involving both turbulent boundary layer [8.4] and jet noise excita-

tion [8.18] of aircraft fusela.3e structure, indicates that very little corre-

lation is obtained between the vibration of panels an either side of frames,

that are fastened to the skin. The correlation, that was obtained with jet

noise excitation, was restricted to a number of adjacent circumferential bays

with equal stringer spacing [8.181.
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In the panel array, between two adjacent frames, the stringer torsion and

bending modes couple up with the panel bending modes to form group modes

(Figure 8.7) that are bounded by the frequency of the coupled stringer torsion

and bending modes. The nunber of modes within each group is equal to the

number of equal adjacent bays. A similar group of modes is repeated at a

higher frequency, bounded by the corresponding higher order stringer torsion

and bending modes. This type of panel array vibration has been reproduced in

the laboratory with grazing incidence jet noise [8.19]. Theory [8.20, 8.21,

8.22, 8.23] has also been developed for predicting the vibration response of

these panels. Simplified method for predicting the frequencies of the group

modes is given in Reference [8,24].

Acceleration measurements [8.4] taken in flight, on an untrimmed fuselage

subjected to turbulent boundary layer excitation, indicated that very little

coh-rence was obtained between the vibration of adjacent panels in the

PANELNO. 2 3 45.8. 7 8 9 10

LOWER BO 302 aW
TOS MODE

Figure 8.7. Mode shapes of a stiffened panel array
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circumferential direction. Coherence is a measure of the amount of

correlation obtained. Where the upstream and downstream panel boundaries

(frames) provided weak "discontinuities" good coherence was obtained between

two adjacent axial panels at coincidence. Turbulent boundary layer [8.25,

8.26] has a relatively long correlation length in the axial direction and a

short correlation length in the later (circumferential) direction, which pro-

vides an explanation of the above observations.

The above result, of low circumferential coherence between adjacent

panels across a stringer, has also been reproduced by analysis (8.27, 8.28],

using realistic analytical models of turbulent boundary layer. The analysis

in reference [8.29] indicated that an upper bound to the noise radiated by

the group modes, that are excited by turbulent boundary layer, can be

obtained by summing the radiation from the individual panels.

The vibration response of single panels, excited by turbulent boundary

layer, has also been studied by many authors [8.29, 8.30, 8.31]. In general,

good correlation has been obtained between the predicted and measured

response. The greatest problem involved the reproduction of the correct edge

conditions encountered in practical aircraft panels. For open section

stringers, the actual panel edge conditions are closer to those of the stringer

torsional mode at the lowest resonant frequency and approach the simply

supported edge condition at the higher panel resonant frequencies. The

simply supported edge condition is, generally, considered to represent the

lower bound for the panel resonant frequencies. However, the resonant fre-

quencies of the higher order panel modes can, in some panels, fall below the

corresponding simply supported panel frequencies, because of the increasing

contribution from the stiffener rotational inertia.

Theory [8.27] indicates that the acoustic power radiated from a panel is

proportional to (a/h) 4/( 10 a/b) where, a, b and h are the panel length,

width, and thickness, respectively, and rI is the panel loss factor. Thus.,
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a considerable reduction in the radiated power can be obtained by the use of

large aspect ratio panels. The power radiated is less for panels supported

by stiffeners of finite width (8.271 than by line attached stiffeners.

The above behavior of single panels and panel arrays was partly respons-

ible for the division of the vibration response of stiffened shell structures

into three vibration regions, in the earlier development of interior noise

prediction methodology [8.32] for large transport aircraft. The three

regions are, in descending order of frequency, the vibration response of the

individual panels, the group modes and the overall shell modes.

8.2.4 Behavior of Shells

Expressions for the noise transmission loss of infinite shallow shells

[8.33], infinitely long unstiffened isotropic and orthotropic cylindrical

shells [8.34] and infinitely long stringer stiffened cylindrical shells have

been developed by Koval. The above cylindrical shells are asssed to be

excited by an acoustic plane wave, incident on the surface of the cylindrical

shell at an angle e, as illustrated in Figure 8.8. Full absorption of the

noise radiated into the interior of these shells is also assumed.

The predicted transmission loss is illustrated in Figure 8.9 [8.35] for

an unstiffened and stringer stiffened shell with the plane wave impinging at

near grazing incidence (8 = 30). The transmission loss is characterized by

a low frequency stiffness controlled region, the resonance region just below

the ring frequency, fR' the mass controlled region and the critical frequency,

f in ascending order of frequency. The noise transmission loss is seen to

be a minimum at the ring frequency. The ring frequency is the fundamental

breathing mode of the shell where all parts of the shell are moving simul-

taneously in or out during the vibration. The ring frequency is given by

f E [- .A (.9)

R 2 rR -s
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for an isotropic shell. Apart from the radius, R, it is a function of the

hell material properties suAch as the Young's modulus E and the density Ps .

Above the ring frequency, the curved panels also start to behave more like

flat panels. The addition of stringers (Figure 8.9) tends to increase the

transmission loss in the mass controlled region [8.35]. Dips in the trans-

mission loss curves in this region are due to stringer torsional modes.

The transmission loss at the ring frequency and the critical fre-

quency, is controlled by the damping in the shell. This result, at the ring

frequency, is due to shell resonances which are responsible for the rela-

tively wide band of low transmission loss in this region. These resonances

below thz ring frequency are actually circumferential modes which are excited

when the trace wave length and frequency of the plane wave matches up with

a circumferential mode that has the same axial characteristics and a non zero

generalized force in the circumferential direction. The vibration response

of the shell, both above and below the ring frequency, is modified by coupling

of the shell vibration modes with the frame vibration mode [8.36]. The

possible effect of this coupling is illustrated in Figure 8.10, where the

unstiffened cylinder rcsponse is obtained only at the lowest fiequencies.

At slightly higher frequencies the unstiffened shell response is replaced by

the frame dominated vibration response of the shell followed by the vibration

of the shell between two adjacent frames.

For a finite length cylinder, the modal density is greatest around the

ring frequency, increasing the resonant region beyond that indicated in Fig-

ure 8.9. Evidence is provided by vibration response tests [8.37] conducted

on a stiffened cylindrical shell, cut from an old fighter aircraft fuselage.

The free-free shell was excited over part of its circumference (Figure 8.11)

by a broad band (80-3000 Hz) random noise, at grazing incidence. The typical

strain response of a panel, located at the mid-section of the shell on the

loudspeaker side, is illustrated inFigure 8.12. The greatest vibration

responsL was obtained just above the ring frequency. Low frequency overall

modes (Figure 8.13) of the stiffened shell were also excited. Flight test

8-17



500[

400

SHELL BETWEEN
~ 30 TWO FRAMES

00

cr 200

100 \ /UNSTIFFENED
ISOTROPIC/ CYLINDER

0 10 20 30

NUMBER OF CIRCUMFERENTIAL WAVES

Figure 8.10. Natural frequencies of a finite, frame-stiffened cylinder
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resuits [8.31] on a bare fuselage, indicate (Figure 8.14) a similar type of

panel response to turbulent boundary layer excitation above the ring frequency,

and a s!vlarly shaped nise radiation spectrum. The panel response in Fig-
ure 8.12 is proportions' -o displacement whereas the acceleration response is

illustrated in Figure 8..

Pressure differential (Figure 8.14) and curvature increase the resonant

frequencies o. the panel and shell modes. This increase in fzequency can be

best deonstrated by considering two simply supported panels, each 20 inches
(508 mam) long, 8 inches (203.2 mm) wide and 0.064 inch (1.63 mam) thick, one
flat and the other curved with a radius of 72 inches (1829 mm). The
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go-

70 M - 0.87

102 3 104

FREOINCY - Hz

Figure 8.14. Typical in-flight fuselage acceleration
response and radiated noise
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L - fundamental frequency of the panels, with both a zero and an 8.5 psi (58.5

N/n 2 ) pressure differential, are listed in Thbie 9.1.

TABLE 8.1 EFFECT OF CURVATURE AND PRESSURE

PmW Radius Fmqm c
PsiIn. Hz
0 " 108

8.5 " 409

0 72 124

8.5 72 414

By far the greatest effect is due to the pressure differential. A pressure

differential of 8.5 psi (58.5 N/rn) is typical for a large transport aircraft

fuselage.

The shell, at and above coincidence, is also a very efficient radiator

of sound [8.16 , similar to the panels. The radiation efflcienc- (Figure 8.15)

is slightly less between the ring frequency and the critical frequency, but

drops off rapidly below the ring frequency. The critical frequency is reduced

by an increase in both the curvature and the pressure differential. The graz-

ing incidence acoustic excitation and the turbulent boundary layer excitation

have a significantly different effect on the critical frequency of both shells

and panels. The convection velocity of the turbulent boundary layer fluctua-

ting pressures is between 0.6 and 0.9 times the free stream velocity, depending

on the frequency. At a flight speed of Mach 0.8 the critical frequency produced

by turbulent boundary layer excitation could be more than fifty percent lower

than that obtained with near grazing incidence acoustic excitation. The infi-

nite panel critical frequency, with turbulent boundary layer excitation, is

given by
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£ = Z - 2?(8.10)c 2n fD ( 2 U0)

where U is the convection velocity, D is the panel flexural difference in

the axial direction and Ap is the pressure differential.

Flight test results (8.4] have also indicated that the critical fre-

quency is affected by the presence of the stringers. It was assumed that the

critical frequency can be related to the longitudinal component of the flex-s

ural wave length, XL, by the expression
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Xa (f

wherv - is an empirically derived frequency index. The measured variation of

this index with frequency is illustrated in Figure 8. 16. For an infinite

isotropic panel 6 = 0.5.

The evidence in this section suggests that there could be a wide frequency

range, in the vibration response of a stiffened shell due to turbulent

boundary layer excitation, where the noise transmission loss could be affected

by t-e shuell dwapi-ag. This region could extend from just below the ring fre-

quency to above the critical frequency. On account of the pressure differ-

ential effect and the relatively low convection velocity of the turbulent

boundary layer relative to the speed of sound, the coincidence frequency is

considerably lower than suggested by acoustic excitation in Figures 8.3 and

8.9. As a consequence, much more of the audio frequency range is included in

the high radiation efficiency region. Turbulent boundary is also much more

efficient than grazing incidence acoustic waves in exciting the panels in this

higher frequency region.

4 I T

o-O MEASURED- 7.45 PSI

3 -.- LNFNITE PLATE

- 1
C1 2

500 loo 1500

FREQUENCY - Hz

rigure 8.16. Variation of frequency index 6 with frequen:y
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8.3 EFFECT OF ACOUSTIC TRiM AND DAMPING TREATMENT ON FUSELAGE DAMPING

8.3.1 Effect of Damping Treatment on interior Noise

Many tests have been conducted that demonstrate the possibility of

reducing interior noise by the application of viscoelastic damping treatments

to the skin. The effectiveness of these treatments, when applied to the bare

fuselage skin can be illustrated in a single figure (Figure 8.17), which repre-

sents measured in-flight data [8.3]. Similar results with minor differences

were previously obtained in iaboratory tests 18.311. The rubber wedges, used

at the upstream panel boundary, are thought to provide an increase in the

panel damping as well as minimizing the reflection of the travelling waves at

the upstream boundary. The rubber wedges were much heavier than the damping

tape which could account for the greater effectiveness.

BAE SION; DAMPING TAPE. RUBBER WEDGES

1A

o I I 1
I A%

CO

4 102  103  1.4 x10 3

FREQINCY - H.,

Figure 8.17. Power spectral density of interior noise (Mach 0.85)
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Based on these results, it must be concluded that viscoelastic damping

treatment is very effective in reducing interior noise. However, these and

other similar results were obtained with a bare fuselage shell, devoid of any

insulating blankets and interior trim. When the full acoustic trim was

installed over the xiscoelastically damped shell, the noise reduction, expected

on the basis of bare shell measurements, usually failed to materialize.

8.3.2 Effect of Acoustic Trim on the Fuselage Damping

The standard aircraft interior trim, generally, consists of a fiberglass

thermal insulating blanket, enclosed in thin plastic that represents a septum

on either side of the blanket, all covered by an interior trim panel. Often,

there is an air gap between the insulating blanket and the aircraft skin.

This treatment increases the noise transmission loss significantly (Figute 8.3)

above the double wall resonance frequency. It becomes highly effective, in

this respect, above a frequency of approximately 1000 Hz.

Two recently completed, but totally independent studies [8.1, 8.2], have

revealed the effect of the acoustic trim on the damping of the structure. One

of these studies 18.2] involved noise transmission tests on a small diameter

stiffened cylinder (Figure 8.18) both with and without the presence of the

interior trim. This study was part of the latest interior noise prediction

methodology development, that requires the use of a measured loss factor for

each of the one-third-octave bands, as part of the input.

T1he measured loss factors, both with and without the presence of the

interior trim, are sumrized in Figure 8.19. These data include loss factors

measured both for the individual modes and in the third-octave bands. The

measured loss factors from an untri-ed metroliner fuselage [8.38] (Figure 8.20)

and from an untrimmed wide body transport aircraft [8.39] are included for

comparison. The loss factors for all three untrimed cylindrical shells tend

to lie along the same mean curve, indicating that the damping in shells may be

dependent primarily on frequency and not on the structural parameters.
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Exterior View

Interior View

Figure 8.20. Bare Mltro liner Fuselage Shell
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The loss factors, for the trimmed small diameter cylinder, appear to have

the same trend with frequency as for the untrimmed shell, except that the level

is approximately four times higher (Figure 8.19) above a frequency of 100 Hz.

The other program involved the development [8.1] of a unique 1-beam visco-

elastic damper for the upper level cabin on the 747 aircraft. Flight measure-

ments made both with and without the trim (Figure 8.21) indicated that the

presence of the trim increased the damping in the dominant panel modes, with

the greatest effect occurring in the lowest frequency mode. This effect is

similar to that observed [8.40] in acoustic progressive wave tunnels (Fig-

ure 8.22) when the test panel area approaches or exceeds the cross sectional

area of the tunnel. Damping tape applied to the panels lowered the bare shell

vibration levels in the lower frequencies that dominate the interior noise to

the levels achieved with the trim (Figure 8.23). The damping tape did prove

to be more effective at higher frequencies. Overall, the noise reduction pro-

duced by the damping tape proved to be quite small (Figure 8.24) in comparison

to that achieved (Figure 8.25) by the use of the I-beam dampers which produced

significantly higher damping than the damping tape.

The conclusion is that viscoelastic damping will reduce interior noise

provided that it is correctly designed. The damping treatment must be desigu.ed

to provide the maximum possible damping, certainly more than that provided by

the acoustic trim, if the treatment is to succeed.

8.3.3 Flight Test Procedures for Developing Viscoelastic Damping Treatments

The reason why the effect of the acoustic trim on the shell damping was

not discovered earlier rests with the test procedures used to design the damp-

ing treatments. The conventional approach [8.3] is based on a flight test

program which includes the following steps:

1. Measure Interior noise in a fully trimmed aircraft to identify the
problem frequencies. (The use of sound intensity measurement
[8.41, 8.42, 8.43] is proving to be very useful in identifying the
problem noise sources.)
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Figure 8.23. Effect of damping tape on bare panel vibration

in comparison to that from acoustic trim

2. Remove all trim over a selected area of the fuselage to provide
access to the structure for taking structural response measurements.

3. Use an acoustic enclosure to cover the exposed aircraft structure to

restrict the noise within the enclosure to that radiated by the
exposed structure.

4. Identify from the measured structural vibration response and

radiated noise data the structural modes producing the radiatednoise, their resonant frequencies, mode shapes and damping levels.

5. Design the damping treatment based on the above modal data, including

the bare shell damping, and the skin temperature. (Most of the damp-
ing treatments fail at this stage because their design is based on
the mneasured bare-shell damping.)

6. Install the damping treatment and repeat the flight test with the
untrimmed aircraft. (This step provides a false sense of security
because of the very encouraging measured noise and vibration level
reductions.)

7. Measure the interior noise with the acoustic trim installed over the
damping tape. (The usually poor level of noise reduction achieved
is onlydiscovered at this stage.)
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Figure 8.25. Noise reduction achieved with I-beam damping

The above approach can still be used to develop the damping treatment

except that the acoustic trim is removed in step 2 only for installation

of the instrumentation. Thereafter steps 3 to 7 are implemented with the

acoustic trim installed.

Another method that has been used to design damping treatment, after

first identifying the noise problem during flight, involves measuring the

resonant frequencies, mode shapes and damping levels by means of impedance

head hammer tap tests or by the use of electrodyaamic shaker excitation.

These tests are performed on the ground both with and without a pressure

differential across the shell, since pressurization increases the she!] fre-

quencies. The easiest way to apply this method is from inside the aircraft,

requiring the removal of the acoustic trim to provide access to the structure.

Thus, the same mistake is repeated with this test method as with the pre-

viously described method. The davping treatment is first designed for the

ground temperature and installed on the aircraft. The abo-ve tap or shaker
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test is repeated to de-monstrate that the desired vibration reduction has been

achieved with the dtimping treatment, Thereafter, a similar damping treatment

is designed for th4e flight temperature.

For the second design procedure to succeed, the acoustic trim must be

left in place during the testing and the tap tests must be conducted on the

outer surface of the aircraft. The instrumentation can be installed on the

inside traderneath the trim or attached to the outer surface of the skin. The

shaker can still be installed inside the aircraft and attached to the structure

through a small aperture in the trim. The shaker is generally used to excite

the overall modes of the shell rather than the panel modes. The tap tests

are more useful in measuring the panel modes.

8.4 SUMOARY OF CURRENT INTERIOR NOISE PREDICTION METHODOLOGY

The development of interior noise prediction methodology has focused,

over the past few years, on propeller-generated noise both In general aviation

and advanced transport aircraft. A summmry of the most recent propeller noise

related research are contained in References [8.441 and [8.45]. The prediction

of the interior noise [8.46, 8.47, 8.481 within the cargo bay of the space

shuttle orbiter vehicle due to the rocket noise at liftoff and fluctuating

pressures during the ascent at maximum dynamic pressure represented a departure

from the above trend in interior noise prediction.

The earlier development on interior noise prediction methodology [8.32]

for large transport type aircraft concentrated on predicting the interior

noise due to jet noise, turbulent boundary layer and reverberant'noise

excitationts. The jet noise and turbulent boundary layer excitations are cur-

rently (8.491 being incorporated into the latest noise prediction methodology

(8.2, 8.50] for use in the design of advanced composite fuselage structure for

minimum interior noise.

This latest method involves a generalized power flow approach in which

the conventional modal dpproach and the statistical energy analysis (SEA) are
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[ integrated for improved computational efficiency. The power balance is

applied at all frequencies, as oppo-ed to the SEA approach, which is usually

restricted to multimodal resonant response within the frequency bands. The

net time-averaged acoustic power, flowing into the enclosed volume, is equated

to the net time averaged power dissipated on the interior walls. Power flow

into each individual acoustic mode is computed at the low frequencies, regard-
less of whether the mode is resonant or not. The sound radiated by resonant

structural modes and nonresonant shell vibration is included. The power flow

out of each acoustic mode to the wall of the cavity, is also computed mode by

mode. By equating the power flows in and out of each mode, both the individual

mode and overall levels can be obtained. This procedure includes expressions
for the exterior excitation, the properties of the intervening structure and

the acoustic trim, and the acoustic and structural "loss factors". At higher

frequencies when the above mode by mode procedure becomes computationally

inefficient, the same methodology is now applied to multimodal response

within each of successive frequency bands.
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